Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Jul 18;92(15):6655–6662. doi: 10.1073/pnas.92.15.6655

Rapid local synchronization of action potentials: toward computation with coupled integrate-and-fire neurons.

J J Hopfield 1, A V Herz 1
PMCID: PMC41391  PMID: 7624307

Abstract

The collective behavior of interconnected spiking nerve cells is investigated. It is shown that a variety of model systems exhibit the same short-time behavior and rapidly converge to (approximately) periodic firing patterns with locally synchronized action potentials. The dynamics of one model can be described by a downhill motion on an abstract energy landscape. Since an energy landscape makes it possible to understand and program computation done by an attractor network, the results will extend our understanding of collective computation from models based on a firing-rate description to biologically more realistic systems with integrate-and-fire neurons.

Full text

PDF
6655

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott LF, van Vreeswijk C Asynchronous states in networks of pulse-coupled oscillators. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1993 Aug;48(2):1483–1490. doi: 10.1103/physreve.48.1483. [DOI] [PubMed] [Google Scholar]
  2. Bak P, Tang C, Wiesenfeld K. Self-organized criticality: An explanation of the 1/f noise. Phys Rev Lett. 1987 Jul 27;59(4):381–384. doi: 10.1103/PhysRevLett.59.381. [DOI] [PubMed] [Google Scholar]
  3. Buhmann J., Schulten K. Associative recognition and storage in a model network of physiological neurons. Biol Cybern. 1986;54(4-5):319–335. doi: 10.1007/BF00318428. [DOI] [PubMed] [Google Scholar]
  4. Carr C. E., Heiligenberg W., Rose G. J. A time-comparison circuit in the electric fish midbrain. I. Behavior and physiology. J Neurosci. 1986 Jan;6(1):107–119. doi: 10.1523/JNEUROSCI.06-01-00107.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eckhorn R., Bauer R., Jordan W., Brosch M., Kruse W., Munk M., Reitboeck H. J. Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat. Biol Cybern. 1988;60(2):121–130. doi: 10.1007/BF00202899. [DOI] [PubMed] [Google Scholar]
  6. Feder HJ, Feder J. Self-organized criticality in a stick-slip process. Phys Rev Lett. 1991 May 20;66(20):2669–2672. doi: 10.1103/PhysRevLett.66.2669. [DOI] [PubMed] [Google Scholar]
  7. Gabrielov A, Newman WI, Knopoff L. Lattice models of failure: Sensitivity to the local dynamics. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 Jul;50(1):188–197. doi: 10.1103/physreve.50.188. [DOI] [PubMed] [Google Scholar]
  8. Grassberger P. Efficient large-scale simulations of a uniformly driven system. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 Mar;49(3):2436–2444. doi: 10.1103/physreve.49.2436. [DOI] [PubMed] [Google Scholar]
  9. Gray C. M., Singer W. Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1698–1702. doi: 10.1073/pnas.86.5.1698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hansel D., Mato G., Meunier C. Synchrony in excitatory neural networks. Neural Comput. 1995 Mar;7(2):307–337. doi: 10.1162/neco.1995.7.2.307. [DOI] [PubMed] [Google Scholar]
  11. Hopfield J. J. Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2554–2558. doi: 10.1073/pnas.79.8.2554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Konishi M. The neural algorithm for sound localization in the owl. Harvey Lect. 1990;86:47–64. [PubMed] [Google Scholar]
  13. Laurent G., Davidowitz H. Encoding of olfactory information with oscillating neural assemblies. Science. 1994 Sep 23;265(5180):1872–1875. doi: 10.1126/science.265.5180.1872. [DOI] [PubMed] [Google Scholar]
  14. Middleton AA, Tang C. Self-Organized Criticality in Nonconserved Systems. Phys Rev Lett. 1995 Jan 30;74(5):742–745. doi: 10.1103/PhysRevLett.74.742. [DOI] [PubMed] [Google Scholar]
  15. Olami Z, Feder HJ, Christensen K. Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes. Phys Rev Lett. 1992 Feb 24;68(8):1244–1247. doi: 10.1103/PhysRevLett.68.1244. [DOI] [PubMed] [Google Scholar]
  16. Poggio T., Torre V., Koch C. Computational vision and regularization theory. 1985 Sep 26-Oct 2Nature. 317(6035):314–319. doi: 10.1038/317314a0. [DOI] [PubMed] [Google Scholar]
  17. Socolar JE, Grinstein G, Jayaprakash C. On self-organized criticality in nonconserving systems. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1993 Apr;47(4):2366–2376. doi: 10.1103/physreve.47.2366. [DOI] [PubMed] [Google Scholar]
  18. Suga N., O'Neill W. E., Kujirai K., Manabe T. Specificity of combination-sensitive neurons for processing of complex biosonar signals in auditory cortex of the mustached bat. J Neurophysiol. 1983 Jun;49(6):1573–1626. doi: 10.1152/jn.1983.49.6.1573. [DOI] [PubMed] [Google Scholar]
  19. Tsodyks M, Mitkov I, I, Sompolinsky H. Pattern of synchrony in inhomogeneous networks of oscillators with pulse interactions. Phys Rev Lett. 1993 Aug 23;71(8):1280–1283. doi: 10.1103/PhysRevLett.71.1280. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES