Skip to main content
Bacteriological Reviews logoLink to Bacteriological Reviews
. 1977 Jun;41(2):449–474. doi: 10.1128/br.41.2.449-474.1977

The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions.

E Katz, A L Demain
PMCID: PMC414008  PMID: 70202

Full text

PDF
474

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akashi K., Kubota K., Kurahashi K. Biosynthesis of enzyme-bound formylvaline and formylvalylglycine. A possible initiation complex for gramicidin A biosynthesis. J Biochem. 1977 Jan;81(1):269–272. doi: 10.1093/oxfordjournals.jbchem.a131446. [DOI] [PubMed] [Google Scholar]
  2. BALASSA G., IONESCO H., SCHAEFFER P. PREUVE G'EN'ETIQUE D'UNE RELATION ENTRE LA PRODUCTION D'UN ANTIBIOTIQUE PAR BACILLUS SUBTILIS ET SA SPORULATION. C R Hebd Seances Acad Sci. 1963 Jul 22;257:986–988. [PubMed] [Google Scholar]
  3. BANERJEE A. B., BOSE S. K. BIOSYNTHESIS OF MYCOBACILLIN, A NEW ANTIFUNGAL PEPTIDE. I. ROLE OF NUCLEIC ACID. J Bacteriol. 1964 Jun;87:1397–1401. doi: 10.1128/jb.87.6.1397-1401.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BERG T. L., FROHOLM L. O., LALAND S. G. THE BIOSYNTHESIS OF GRAMICIDIN S IN A CELL-FREE SYSTEM. Biochem J. 1965 Jul;96:43–52. doi: 10.1042/bj0960043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. BERNLOHR R. W., NOVELLI G. D. BACITRACIN BIOSYNTHESIS AND SPORE FORMATION: THE PHYSIOLOGICAL ROLE OF AN ANTIBIOTIC. Arch Biochem Biophys. 1963 Oct;103:94–104. doi: 10.1016/0003-9861(63)90014-6. [DOI] [PubMed] [Google Scholar]
  6. BODANSZKY M., PERLMAN D. ARE PEPTIDE ANTIBIOTICS SMALL PROTEINS? Nature. 1964 Nov 28;204:840–844. doi: 10.1038/204840a0. [DOI] [PubMed] [Google Scholar]
  7. BU'LOCK J. D. Intermediary metabolism and antibiotic synthesis. Adv Appl Microbiol. 1961;3:293–342. doi: 10.1016/s0065-2164(08)70514-8. [DOI] [PubMed] [Google Scholar]
  8. BURKHOLDER P. R. Antibiotics; the exploitation of microbial antagonisms is having a challenging impact on medicine and society. Science. 1959 May 29;129(3361):1457–1465. doi: 10.1126/science.129.3361.1457. [DOI] [PubMed] [Google Scholar]
  9. Bauer K., Roskoski R., Jr, Kleinkauf H., Lipmann F. Synthesis of a linear gramicidin by a combination of biosynthetic and organic methods. Biochemistry. 1972 Aug 15;11(17):3266–3271. doi: 10.1021/bi00767a022. [DOI] [PubMed] [Google Scholar]
  10. Blanch H. W., Rogers P. L. Production of gramicidin S in batch and continuous culture. Biotechnol Bioeng. 1971 Nov;13(6):843–864. doi: 10.1002/bit.260130609. [DOI] [PubMed] [Google Scholar]
  11. Bodanszky M., Perlman D. Peptide antibiotics. Science. 1969 Jan 24;163(3865):352–358. doi: 10.1126/science.163.3865.352. [DOI] [PubMed] [Google Scholar]
  12. Borowska Z. K., Tatum E. L. Biosynthesis of edeine by Bacillus brevis Vm4 in vivo and in vitro. Biochim Biophys Acta. 1966 Jan 18;114(1):206–209. doi: 10.1016/0005-2787(66)90273-5. [DOI] [PubMed] [Google Scholar]
  13. Brady L. R. Toxins of higher fungi. Lloydia. 1975 Jan-Feb;38(1):36–56. [PubMed] [Google Scholar]
  14. Bredesen J. E., Zimmer T. -L., Laland S. G. Starting point and direction of biosynthesis of gramicidin S. FEBS Lett. 1969 May;3(3):169–172. doi: 10.1016/0014-5793(69)80126-2. [DOI] [PubMed] [Google Scholar]
  15. Bycroft B. W. Structural relationships in microbial peptides. Nature. 1969 Nov 8;224(5219):595–597. doi: 10.1038/224595a0. [DOI] [PubMed] [Google Scholar]
  16. Bérdy J. Recent developments of antibiotic research and classification of antibiotics according to chemical structure. Adv Appl Microbiol. 1974;18(0):309–406. [PubMed] [Google Scholar]
  17. CORNELL N., SNOKE J. E. BIOSYNTHESIS OF BACITRACIN AND PROTEIN. Biochim Biophys Acta. 1964 Nov 15;91:533–536. doi: 10.1016/0926-6550(64)90086-6. [DOI] [PubMed] [Google Scholar]
  18. CRAIG L. C., HAUSMANN W., WEISIGER J. R. The qualitative and quantitative amino acid content of bacitracin A. J Biol Chem. 1952 Dec;199(2):865–871. [PubMed] [Google Scholar]
  19. DIGIROLAMO M., CIFERRI O., DIGIROLAMO A. B., ALBERTINI A. EFFECT OF D-LEUCINE ON THE BIOSYNTHESIS OF POLYMIXIN D. J Biol Chem. 1964 Feb;239:502–507. [PubMed] [Google Scholar]
  20. Dalziel Keith. A kinetic interpretation of the allosteric model of Monod, Wyman, and Changeux. FEBS Lett. 1968 Oct;1(5):339–342. doi: 10.1016/0014-5793(68)80150-4. [DOI] [PubMed] [Google Scholar]
  21. Demain A. L. How do antibiotic-producing microorganisms avoid suicide? Ann N Y Acad Sci. 1974 May 10;235(0):601–612. doi: 10.1111/j.1749-6632.1974.tb43294.x. [DOI] [PubMed] [Google Scholar]
  22. Egorov N. S., Vypiiach A. N., Zharikova G. G. Svobodnye aminokisloty i soderzhanie gramitsidina C v protsesse prorastaniia spor R-varianta Bac. brevis. Mikrobiologiia. 1970 Mar-Apr;39(2):331–336. [PubMed] [Google Scholar]
  23. Froyshov O. Bacitracin biosynthesis by three complementary fractions from Bacillus licheniformis. FEBS Lett. 1974 Aug 15;44(1):75–78. doi: 10.1016/0014-5793(74)80309-1. [DOI] [PubMed] [Google Scholar]
  24. Froyshov O., Laland S. G. On the biosynthesis of bacitracin by a soluble enzyme complex from Bacillus licheniformis. Eur J Biochem. 1974 Jul 15;46(2):235–242. doi: 10.1111/j.1432-1033.1974.tb03616.x. [DOI] [PubMed] [Google Scholar]
  25. Frøshov Ø, Zimmer T. L., Laland S. G. The nature of the enzyme bound intermediates in gramicidin s biosynthesis. FEBS Lett. 1970 Mar 16;7(1):68–71. doi: 10.1016/0014-5793(70)80620-2. [DOI] [PubMed] [Google Scholar]
  26. Fujikawa K., Sakamoto Y., Kurahashi K. Biosynthesis of tyrocidine by a cell-free enzyme system of Bacillus brevis ATCC 8185. 3. Further purification of components I and II and their functions in tyrocidine synthesis. J Biochem. 1971 May;69(5):869–879. doi: 10.1093/oxfordjournals.jbchem.a129538. [DOI] [PubMed] [Google Scholar]
  27. Fujikawa K., Sakamoto Y., Suzuki T., Kurahashi K. Biosynthesis of tyrocidine by a cell-free enzyme system of Bacillus brevis ATCC 8185. II. Amino acid substitution in tyrocidine. Biochim Biophys Acta. 1968 Dec 17;169(2):520–533. doi: 10.1016/0005-2787(68)90060-9. [DOI] [PubMed] [Google Scholar]
  28. Fujikawa K., Suzuki T., Kurahashi K. Biosynthesis of tyrocidine by a cell-free enzyme system of Bacillus brevis ATCC 8185. I. Preparation of partially purified enzyme system and its properties. Biochim Biophys Acta. 1968 Jun 18;161(1):232–246. doi: 10.1016/0005-2787(68)90313-4. [DOI] [PubMed] [Google Scholar]
  29. Fujikawa K., Suzuki T., Kurahashi K. Incorporation of L-leucine-C14 into tyrocidine by a cell-free preparation of Bacillus brevis Dubos strain. J Biochem. 1966 Aug;60(2):216–218. doi: 10.1093/oxfordjournals.jbchem.a128421. [DOI] [PubMed] [Google Scholar]
  30. Gevers W., Kleinkauf H., Lipmann F. Peptidyl transfers in gramicidin S bisoynthesis from enzyme-bound thioester intermediates. Proc Natl Acad Sci U S A. 1969 Aug;63(4):1335–1342. doi: 10.1073/pnas.63.4.1335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Gevers W., Kleinkauf H., Lipmann F. The activation of amino acids for biosynthesis of gramicidin S. Proc Natl Acad Sci U S A. 1968 May;60(1):269–276. doi: 10.1073/pnas.60.1.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Gilhuus-Moe C. C., Kristensen T., Bredesen J. E., Zimmer T. -L., Laland S. G. The presence and possible role of phosphopantothenic acid in gramicidin S synthetase. FEBS Lett. 1970 Apr 16;7(3):287–290. doi: 10.1016/0014-5793(70)80183-1. [DOI] [PubMed] [Google Scholar]
  33. Gottlieb D. The production and role of antibiotics in soil. J Antibiot (Tokyo) 1976 Oct;29(10):987–1000. doi: 10.7164/antibiotics.29.987. [DOI] [PubMed] [Google Scholar]
  34. HENDLIN D. The nutritional requirements of a bacitracin-producing strain of Bacillus subtilis. Arch Biochem. 1949 Dec;24(2):435–446. [PubMed] [Google Scholar]
  35. Haavik H. I., Froyshov O. Function of peptide antibiotics in producer organisms. Nature. 1975 Mar 6;254(5495):79–82. doi: 10.1038/254079a0. [DOI] [PubMed] [Google Scholar]
  36. Haavik H. I. Studies on the formation of bacitracin by Bacillus licheniformis: effect of glucose. J Gen Microbiol. 1974 Apr;81(2):383–390. doi: 10.1099/00221287-81-2-383. [DOI] [PubMed] [Google Scholar]
  37. Haavik H. I., Thomassen S. A bacitracin-negative mutant of Bacillus licheniformis which is able to sporulate. J Gen Microbiol. 1973 Jun;76(2):451–454. doi: 10.1099/00221287-76-2-451. [DOI] [PubMed] [Google Scholar]
  38. Hanson R. S., Peterson J. A., Yousten A. A. Unique biochemical events in bacterial sporulation. Annu Rev Microbiol. 1970;24:53–90. doi: 10.1146/annurev.mi.24.100170.000413. [DOI] [PubMed] [Google Scholar]
  39. Hettinger T. P., Craig L. C. Edeine. II. The composition of the antibiotic peptide edeine A. Biochemistry. 1968 Dec;7(12):4147–4153. doi: 10.1021/bi00852a001. [DOI] [PubMed] [Google Scholar]
  40. Hettinger T. P., Craig L. C. Edeine. IV. Structures of the antibiotic peptides edeines A1 and B1. Biochemistry. 1970 Mar 3;9(5):1224–1232. doi: 10.1021/bi00807a025. [DOI] [PubMed] [Google Scholar]
  41. Hettinger T. P., Kurylo-Borowska Z., Craig L. C. Edeine. 3. The composition of the antibiotic peptide edeine B. Biochemistry. 1968 Dec;7(12):4153–4160. doi: 10.1021/bi00852a002. [DOI] [PubMed] [Google Scholar]
  42. Hodgson B. Possible roles for antibiotics and other biologically active peptides at specific stages during sporulation of Bacillaceae. J Theor Biol. 1971 Jan;30(1):111–119. doi: 10.1016/0022-5193(71)90040-3. [DOI] [PubMed] [Google Scholar]
  43. Holm H., Froholm L. O., Laland S. Isolation of a peptide conjugate with the sequence phe-pro-val-orn from a cell-free system producing gramicidin S. Biochim Biophys Acta. 1966 Feb 28;115(2):361–370. doi: 10.1016/0304-4165(66)90436-3. [DOI] [PubMed] [Google Scholar]
  44. Howells J. D., Anderson L. E., Coffey G. L., Senos G. D., Underhill M. A., Vogler D. L., Ehrlich J. Butirosin, a new aminoglycosidic antibiotic complex: bacterial origin and some microbiological studies. Antimicrob Agents Chemother. 1972 Aug;2(2):79–83. doi: 10.1128/aac.2.2.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Huang F. C., Chan J. A., Sih C. J., Fawcett P., Abraham E. P. Letter: The nonparticipation of alpha,beta-dehydrovalinyl intermediates in the formation of sigma-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine. J Am Chem Soc. 1975 Jun 25;97(13):3858–3859. doi: 10.1021/ja00846a074. [DOI] [PubMed] [Google Scholar]
  46. Ishihara H., Sasaki T., Shimura K. Biosynthesis of bacitracin. II. Incorporation of 14C-labeled amino acids into bacitracin by a cell-free preparation from Bacillus licheniformis. Biochim Biophys Acta. 1968 Sep 24;166(2):496–504. [PubMed] [Google Scholar]
  47. Ito M., Aida K., Uemura T. Biosynthesis of colistin by Bacillus colistinus Koyama. Biochim Biophys Acta. 1970 Jul 16;213(1):244–247. doi: 10.1016/0005-2787(70)90030-4. [DOI] [PubMed] [Google Scholar]
  48. Ito M., Koyama Y., Aida K., Uemura T. Biosynthesis of colistin by a cell-free system Bacillus colistinus Koyama. Biochim Biophys Acta. 1970 Aug 14;215(2):418–420. doi: 10.1016/0304-4165(70)90044-9. [DOI] [PubMed] [Google Scholar]
  49. Itoh H., Yamada M., Tomino S., Kurahashi K. The role of two complementary fractions of gramicidin S synthesizing enzyme system. J Biochem. 1968 Aug;64(2):259–261. doi: 10.1093/oxfordjournals.jbchem.a128888. [DOI] [PubMed] [Google Scholar]
  50. Iwaki M., Shimura K., Kanda M., Kaji E., Saito Y. Some mutants of Bacillus brevis deficient in gramicidin S formation. Biochem Biophys Res Commun. 1972 Jul 11;48(1):113–118. doi: 10.1016/0006-291x(72)90351-8. [DOI] [PubMed] [Google Scholar]
  51. Jayaraman K., Kannan R. The role of polypeptide antibiotics on the bacterial differentiation. Biochem Biophys Res Commun. 1972 Sep 5;48(5):1235–1239. doi: 10.1016/0006-291x(72)90843-1. [DOI] [PubMed] [Google Scholar]
  52. Jayaraman K., Monteal J., Paulus H. L-Alpha,gamma-diaminobutyrate-activating enzyme from Bacillus polymyxa. Properties and distribution. Biochim Biophys Acta. 1969;185(2):447–457. doi: 10.1016/0005-2744(69)90437-9. [DOI] [PubMed] [Google Scholar]
  53. Kalakoutskii L. V., Agre N. S. Comparative aspects of development and differentiation in actinomycetes. Bacteriol Rev. 1976 Jun;40(2):469–524. doi: 10.1128/br.40.2.469-524.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Kambe M., Imae Y., Kurahashi K. Biochemical studies on gramicidin S non-producing mutants of Bacillus brevis ATCC 9999. J Biochem. 1974 Mar;75(3):481–493. doi: 10.1093/oxfordjournals.jbchem.a130417. [DOI] [PubMed] [Google Scholar]
  55. Kambe M., Sakamoto Y., Kurahashi K. Biosynthesis of tyrocidine by a cell-free enzyme system of Bacillus brevis ATCC 8185. IV. Further separation of component II into two fractions. J Biochem. 1971 Jun;69(6):1131–1133. doi: 10.1093/oxfordjournals.jbchem.a129567. [DOI] [PubMed] [Google Scholar]
  56. Katz E. Biosynthesis of polypeptide antibiotics. Pure Appl Chem. 1971;28(4):551–570. doi: 10.1351/pac197128040551. [DOI] [PubMed] [Google Scholar]
  57. Kleinkauf H., Gevers W. Nonribosomal polypeptide synthesis: the biosynthesis of a cyclic peptide antibiotic, gramicidin S. Cold Spring Harb Symp Quant Biol. 1969;34:805–813. doi: 10.1101/sqb.1969.034.01.092. [DOI] [PubMed] [Google Scholar]
  58. Kleinkauf H., Gevers W., Roskoski R., Jr, Lipmann F. Enzyme-bound phosphopantetheine in tyrocidine biosynthesis. Biochem Biophys Res Commun. 1970 Dec 9;41(5):1218–1222. doi: 10.1016/0006-291x(70)90216-0. [DOI] [PubMed] [Google Scholar]
  59. Kleinkauf H., Roskoski R., Jr, Lipmann F. Pantetheine-linked peptide intermediates in gramicidin S and tyrocidine biosynthesis. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2069–2072. doi: 10.1073/pnas.68.9.2069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Kurahashi K. Biosynthesis of small peptides. Annu Rev Biochem. 1974;43(0):445–459. doi: 10.1146/annurev.bi.43.070174.002305. [DOI] [PubMed] [Google Scholar]
  61. Kurahashi K., Yamada M., Mori K., Fujikawa K., Kambe M., Imae Y., Sato E., Takahashi H., Sakamoto Y. Biosynthesis of cyclic oligopeptide. Cold Spring Harb Symp Quant Biol. 1969;34:815–826. doi: 10.1101/sqb.1969.034.01.093. [DOI] [PubMed] [Google Scholar]
  62. Kurylo-Borowska Z., Abramsky T. Biosynthesis of -tyrosine. Biochim Biophys Acta. 1972 Mar 30;264(1):1–10. doi: 10.1016/0304-4165(72)90110-9. [DOI] [PubMed] [Google Scholar]
  63. Kurylo-Borowska Z. Biosynthesis of edeine: II. Localization of edeine synthetase within Bacillus brevis Vm4. Biochim Biophys Acta. 1975 Jul 14;399(1):31–41. [PubMed] [Google Scholar]
  64. Kurylo-Borowska Z., Sedkowska J. Biosynthesis of edeine. Fractionation and characterization of enzymes responsible for biosynthesis of edeine A and B. Biochim Biophys Acta. 1974 May 10;351(1):42–56. [PubMed] [Google Scholar]
  65. LOCKHART I. M., ABRAHAM E. P., NEWTON G. G. The N-terminal and sulphur-containing residues of bacitracin A. Biochem J. 1955 Dec;61(4):534–544. doi: 10.1042/bj0610534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. LOCKHART I. M., ABRAHAM E. P. The amino acid sequence in bacitracin A. Biochem J. 1954 Dec;58(4):633–647. doi: 10.1042/bj0580633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Laland S. G., Froyshov O., Gilhuus-Moe C., Zimmer T. L. Gramicidin S synthetase, an enzyme with an unusually large number of catalytic functions. Nat New Biol. 1972 Sep 13;239(89):43–44. doi: 10.1038/newbio239043a0. [DOI] [PubMed] [Google Scholar]
  68. Laland S. G., Zimmer T. L. The protein thiotemplate mechanism of synthesis for the peptide antibiotics produced by Bacillus brevis. Essays Biochem. 1973;9:31–57. [PubMed] [Google Scholar]
  69. Lee S. G., Lipmann F. Isolation of a peptidyl-pantetheine-protein from tyrocidine-synthesizing polyenzymes. Proc Natl Acad Sci U S A. 1974 Mar;71(3):607–611. doi: 10.1073/pnas.71.3.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Lee S. G., Littau V., Lipmann F. The relation between sporulation and the induction of antibiotic synthesis and of amino acid uptake in Bacillus brevis. J Cell Biol. 1975 Aug;66(2):233–242. doi: 10.1083/jcb.66.2.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Leung D. C., Baxter R. M. Substrate-derived reversible and irreversible inhibitors of the multi-enzyme I of gramicidin S biosynthesis. Biochim Biophys Acta. 1972 Aug 18;279(1):34–47. doi: 10.1016/0304-4165(72)90239-5. [DOI] [PubMed] [Google Scholar]
  72. Lipmann F. Attempts to map a process evolution of peptide biosynthesis. Science. 1971 Sep 3;173(4000):875–884. doi: 10.1126/science.173.4000.875. [DOI] [PubMed] [Google Scholar]
  73. Lipmann F., Gevers W., Kleinkauf H., Roskoski R., Jr Polypeptide synthesis on protein templates: the enzymatic synthesis of gramicidin S and tyrocidine. Adv Enzymol Relat Areas Mol Biol. 1971;35:1–34. doi: 10.1002/9780470122808.ch1. [DOI] [PubMed] [Google Scholar]
  74. Lipmann F. The search for remnants of early evolution in present-day metabolism. Biosystems. 1975 May;6(4):234–238. doi: 10.1016/0303-2647(75)90066-0. [DOI] [PubMed] [Google Scholar]
  75. MACH B., TATUM E. L. ENVIRONMENTAL CONTROL OF AMINO ACID SUBSTITUTIONS IN THE BIOSYNTHESIS OF THE ANTIBIOTIC POLYPEPTIDE TYROCIDINE. Proc Natl Acad Sci U S A. 1964 Oct;52:876–884. doi: 10.1073/pnas.52.4.876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. MAJUMDAR S. K., BOSE S. K. Amino acid sequence in mycobacillin. Biochem J. 1960 Mar;74:596–599. doi: 10.1042/bj0740596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Maier W., Gröger D. Biosynthese der Peptidantibiotica. Pharmazie. 1972 Aug;27(8):491–505. [PubMed] [Google Scholar]
  78. Marshall R., Redfield B., Katz E., Weissbach H. Changes in phenoxazinone synthetase activity during the growth cycle of Streptomyces antibioticus. Arch Biochem Biophys. 1968 Feb;123(2):317–323. doi: 10.1016/0003-9861(68)90141-0. [DOI] [PubMed] [Google Scholar]
  79. Matteo C. C., Cooney C. L., Demain A. L. Production of gramicidin S synthetases by Bacillus brevis in continuous culture. J Gen Microbiol. 1976 Oct;96(2):415–422. doi: 10.1099/00221287-96-2-415. [DOI] [PubMed] [Google Scholar]
  80. Nesemann G., Präve P., Sukatsch D., Vértesy L. Ein Polyen-Antibiotikum aus Bakterien. Naturwissenschaften. 1972 Feb;59(2):81–82. doi: 10.1007/BF00593477. [DOI] [PubMed] [Google Scholar]
  81. OKUDA K., EDWARDS G. C., WINNICK T. Biosynthesis of gramicidin and tryocidine in the Dubos strain of Bacillus brevis. I. Experiments with growing cultures. J Bacteriol. 1963 Feb;85:329–338. doi: 10.1128/jb.85.2.329-338.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. PAULUS H., GRAY E. THE BIOSYNTHESIS OF POLYMYXIN B BY GROWING CULTURES OF BACILLUS POLYMYXA. J Biol Chem. 1964 Mar;239:865–871. [PubMed] [Google Scholar]
  83. Perlman D., Bodanszky M. Biosynthesis of peptide antibiotics. Annu Rev Biochem. 1971;40:449–464. doi: 10.1146/annurev.bi.40.070171.002313. [DOI] [PubMed] [Google Scholar]
  84. Pfaender P., Specht D., Heinrich G., Schwarz E., Kuhnle E., Simlot M. M. Enzymes of Bacillus licheniformis in the biosynthesis of Bacitracin A. FEBS Lett. 1973 May 15;32(1):100–104. doi: 10.1016/0014-5793(73)80747-1. [DOI] [PubMed] [Google Scholar]
  85. RUTTENBERG M. A., KING T. P., CRAIG L. C. THE CHEMISTRY OF TYROCIDINE. VI. THE AMINO ACID SEQUENCE OF TYROCIDINE C. Biochemistry. 1965 Jan;4:11–18. doi: 10.1021/bi00877a003. [DOI] [PubMed] [Google Scholar]
  86. Rao K. R., Hall J. B. Biosynthesis of tyrocidines by extracts of two strains of Bacillus brevis. Proc Soc Exp Biol Med. 1970 Nov;135(2):345–347. doi: 10.3181/00379727-135-35048. [DOI] [PubMed] [Google Scholar]
  87. Rao R. K., Bhagavan N. V., Rao K. R., Hall J. B. Peptide synthesis in cell-free extracts of Bacillus brevis 8185. Biochemistry. 1968 Sep;7(9):3072–3077. doi: 10.1021/bi00849a007. [DOI] [PubMed] [Google Scholar]
  88. Ristow H., Schazschneider B., Bauer K., Kleikauf H. Tyrocidine and the linear gramicidin. Do these peptide antibiotics play an antagonistic regulative role in sporulation? Biochim Biophys Acta. 1975 May 1;390(2):246–252. [PubMed] [Google Scholar]
  89. Ristow H., Schazschneider B., Kleinkauf H. Effects of the peptide antibiotics tyrocidine and the linear gramicidin on RNA SYNTHESIS AND SPORULATION OF Bacillus brevis. Biochem Biophys Res Commun. 1975 Apr 21;63(4):1085–1092. doi: 10.1016/0006-291x(75)90680-4. [DOI] [PubMed] [Google Scholar]
  90. Rogers H. J., Lomakina N., Abraham E. P. Observations on the structure of bacilysin. Biochem J. 1965 Nov;97(2):579–586. doi: 10.1042/bj0970579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Roncari G., Kurylo-Borowska Z., Craig L. C. On the chemical nature of the antibiotic edeine. Biochemistry. 1966 Jul;5(7):2153–2159. doi: 10.1021/bi00871a002. [DOI] [PubMed] [Google Scholar]
  92. Roscoe J., Abraham E. P. Experiments relating to the biosynthesis of bacilysin. Biochem J. 1966 Jun;99(3):793–800. doi: 10.1042/bj0990793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Roskoski R., Jr, Gevers W., Kleinkauf H., Lipmann F. Tyrocidine biosynthesis by three complementary fractions from Bacillus brevis (ATCC 8185). Biochemistry. 1970 Dec 8;9(25):4839–4845. doi: 10.1021/bi00827a002. [DOI] [PubMed] [Google Scholar]
  94. Roskoski R., Jr, Kleinkauf H., Gevers W., Lipmann F. Isolation of enzyme-bound peptide intermediates in tyrocidine biosynthesis. Biochemistry. 1970 Dec 8;9(25):4846–4851. doi: 10.1021/bi00827a003. [DOI] [PubMed] [Google Scholar]
  95. Roskoski R., Jr, Ryan G., Kleinkauf H., Gevers W., Lipmann F. Polypeptide biosynthesis form thioesters of amino acids. Arch Biochem Biophys. 1971 Apr;143(2):485–492. doi: 10.1016/0003-9861(71)90233-5. [DOI] [PubMed] [Google Scholar]
  96. Ruttenberg M. A., Mach B. Studies on amino acid substitution in the biosynthesis of the antibiotic polypeptide tyrocidine. Biochemistry. 1966 Sep;5(9):2864–2869. doi: 10.1021/bi00873a013. [DOI] [PubMed] [Google Scholar]
  97. SARGES R., WITKOP B. GRAMICIDIN A. V. THE STRUCTURE OF VALINE- AND ISOLEUCINE-GRAMICIDIN A. J Am Chem Soc. 1965 May 5;87:2011–2020. doi: 10.1021/ja01087a027. [DOI] [PubMed] [Google Scholar]
  98. SARGES R., WITKOP B. GRAMICIDIN A. VI. THE SYNTHESIS OF VALINE- AND ISOLEUCINE-GRAMICIDIN A. J Am Chem Soc. 1965 May 5;87:2020–2027. doi: 10.1021/ja01087a028. [DOI] [PubMed] [Google Scholar]
  99. SARGES R., WITKOP B. GRAMICIDIN. VII. THE STRUCTURE OF VALINE- AND ISOLEUCINE-GRAMICIDIN B. J Am Chem Soc. 1965 May 5;87:2027–2030. doi: 10.1021/ja01087a029. [DOI] [PubMed] [Google Scholar]
  100. SHIMURA K., SASAKI T., SUGAWARA K. BIOSYNTHESIS OF BACITRACIN. I. FORMATION OF BACITRACIN BY A SUBCELLULAR FRACTION OF BACILLUS LICHENIFORMIS. Biochim Biophys Acta. 1964 Apr 4;86:46–55. [PubMed] [Google Scholar]
  101. SNOKE J. E., CORNELL N. PROTOPLAST LYSIS AND INHIBITION OF GROWTH OF BACILLUS LICHENIFORMIS BY BACITRACIN. J Bacteriol. 1965 Feb;89:415–420. doi: 10.1128/jb.89.2.415-420.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. SUZUKI T., FUJIKAWA K. STUDIES ON THE CHEMICAL STRUCTURE OF COLISTIN. IV. CHEMICAL STRUCTURE OF COLISTIN B. J Biochem. 1964 Aug;56:182–189. doi: 10.1093/oxfordjournals.jbchem.a127976. [DOI] [PubMed] [Google Scholar]
  103. SUZUKI T., HAYASHI K., FUJIKAWA K., TSUKAMOTO K. THE CHEMICAL STRUCTURE OF POLYMYXIN E: THE IDENTITIES OF POLYMYXIN E1 WITH COLISTIN A AND OF POLYMYXIN E2 WITH COLISTIN B. J Biochem. 1965 Feb;57:226–227. doi: 10.1093/oxfordjournals.jbchem.a128082. [DOI] [PubMed] [Google Scholar]
  104. SUZUKI T., INOUYE H., FUJIKAWA K., SUKETA Y. STUDIES ON THE CHEMICAL STRUCTURE OF COLISTIN. I. FRACTIONATION, MOLECULAR WEIGHT DETERMINATION, AMINO ACID AND FATTY ACID COMPOSITION. J Biochem. 1963 Jul;54:25–33. doi: 10.1093/oxfordjournals.jbchem.a127742. [DOI] [PubMed] [Google Scholar]
  105. Saito Y., Otani S., Otani S. Biosynthesis of gramicidin S. Adv Enzymol Relat Areas Mol Biol. 1970;33:337–380. doi: 10.1002/9780470122785.ch7. [DOI] [PubMed] [Google Scholar]
  106. Sarkar N., Paulus H. Function of peptide antibiotics in sporulation. Nat New Biol. 1972 Oct 25;239(95):228–230. doi: 10.1038/newbio239228a0. [DOI] [PubMed] [Google Scholar]
  107. Schaeffer P. Sporulation and the production of antibiotics, exoenzymes, and exotonins. Bacteriol Rev. 1969 Mar;33(1):48–71. doi: 10.1128/br.33.1.48-71.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Schazschneider B., Ristow H., Kleinkauf H. Interaction between the antibiotic tyrocidine and DNA in vitro. Nature. 1974 Jun 21;249(459):757–759. doi: 10.1038/249757a0. [DOI] [PubMed] [Google Scholar]
  109. Schmitt R., Freese E. Curing of a sporulation mutant and antibiotic activity of Bacillus subtilis. J Bacteriol. 1968 Oct;96(4):1255–1265. doi: 10.1128/jb.96.4.1255-1265.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Sengupta S., Banerjee A. B., Bose S. K. Gamma-glutamyl and D- or L-peptide linkages in mycobacillin, a cyclic peptide antibiotic. Biochem J. 1971 Mar;121(5):839–846. doi: 10.1042/bj1210839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Sengupta S., Bose S. K. Peptides from a mycobacillin-synthesizing cell-free system. Biochem J. 1972 Jun;128(1):47–52. doi: 10.1042/bj1280047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Sengupta S., Bose S. K. Properties and localisation of mycobacillin-synthesising enzyme system in Bacillus subtilis B3. Biochim Biophys Acta. 1971 Apr 20;237(1):120–122. doi: 10.1016/0304-4165(71)90037-7. [DOI] [PubMed] [Google Scholar]
  113. Simlot M. M., Pfaender P., Specht D. Synthesis of antibiotics by enzymes from altered growth conditions by Bacillus licheniformis. FEBS Lett. 1973 Sep 15;35(2):231–235. doi: 10.1016/0014-5793(73)80292-3. [DOI] [PubMed] [Google Scholar]
  114. Snoke J. E. FORMATION OF BACITRACIN BY PROTOPLASTS OF BACILLUS LICHENIFORMIS. J Bacteriol. 1961 Jun;81(6):986–989. doi: 10.1128/jb.81.6.986-989.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Stoll E., Frøyshov Ø, Holm H., Zimmer T. L., Laland S. G. On the mechanism of gramicidin S formation from intermediate peptides. FEBS Lett. 1970 Dec 18;11(5):348–352. doi: 10.1016/0014-5793(70)80566-x. [DOI] [PubMed] [Google Scholar]
  116. Szulmajster J., Bonamy C., Laporte J. Isolation and properties of a temperature-sensitive sporulation mutant of Bacillus subtilis. J Bacteriol. 1970 Mar;101(3):1027–1037. doi: 10.1128/jb.101.3.1027-1037.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Tomino S., Kurahashi K. Enzymic synthesis of D-phenylalanyl-L-prolyl-L-valine, a peptide sequence present in gramicidin S. Biochem Biophys Res Commun. 1964 Oct 14;17(3):288–293. doi: 10.1016/0006-291x(64)90399-7. [DOI] [PubMed] [Google Scholar]
  118. Tomino S., Yamada M., Itoh H., Kurahashik Cell-free synthesis of gramicidin S. Biochemistry. 1967 Aug;6(8):2552–2560. doi: 10.1021/bi00860a037. [DOI] [PubMed] [Google Scholar]
  119. Troy F. A. Chemistry and biosynthesis of the poly( -D-glutamyl) capsule in Bacillus licheniformis. I. Properties of the membrane-mediated biosynthetic reaction. J Biol Chem. 1973 Jan 10;248(1):305–315. [PubMed] [Google Scholar]
  120. Vogler K., Studer R. O. The chemistry of the polymyxin antibiotics. Experientia. 1966 Jun 15;22(6):345–354. doi: 10.1007/BF01901127. [DOI] [PubMed] [Google Scholar]
  121. WINNICK R. E., WINNICK T. Biosynthesis of gramicidin S. II. Incorporation experiments with labeled amino acid analogs, and the amino acid activation process. Biochim Biophys Acta. 1961 Nov 11;53:461–468. doi: 10.1016/0006-3002(61)90203-7. [DOI] [PubMed] [Google Scholar]
  122. Weinberg E. D. Secondary metabolism: raison d'être. Perspect Biol Med. 1971;14(4):565–577. doi: 10.1353/pbm.1971.0033. [DOI] [PubMed] [Google Scholar]
  123. Wojciechowska H., Ciarkowski J., Chmara H., Borowski E. The antibiotic edeine. IX. The isolation and the composition of edeine D. Experientia. 1972 Dec 15;28(12):1423–1424. doi: 10.1007/BF01957826. [DOI] [PubMed] [Google Scholar]
  124. YAMADA M., TOMINO S., KURAHASHI K. CONVERSION OF L-PHENYLALANINE TO D-PHENYLALANINE BY CELL-FREE EXTRACTS OF BACILLUS BREVIS. J Biochem. 1964 Dec;56:616–618. doi: 10.1093/oxfordjournals.jbchem.a128046. [DOI] [PubMed] [Google Scholar]
  125. YUKIOKA M., TSUKAMOTO Y., SAITO Y., TSUJI T., OTANI S., OTANI S. BIOSYNTHESIS OF GRAMICIDIN S BY A CELL-FREE SYSTEM OF BACILLUS BREVIS. Biochem Biophys Res Commun. 1965 Apr 9;19:204–208. doi: 10.1016/0006-291x(65)90505-x. [DOI] [PubMed] [Google Scholar]
  126. Yamada M., Kurahashi K. Adenosine triphosphate and pyrophosphate dependent phenylalanine racemase of Bacillus brevis Nagano. J Biochem. 1968 Jan;63(1):59–69. doi: 10.1093/oxfordjournals.jbchem.a128748. [DOI] [PubMed] [Google Scholar]
  127. Yukioka M., Saito Y., Otani S. Enzymatic hydrolysis of gramicidin S. J Biochem. 1966 Sep;60(3):295–302. doi: 10.1093/oxfordjournals.jbchem.a128436. [DOI] [PubMed] [Google Scholar]

Articles from Bacteriological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES