Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Jul 18;92(15):7065–7069. doi: 10.1073/pnas.92.15.7065

Evidence that the 50-kDa substrate of brefeldin A-dependent ADP-ribosylation binds GTP and is modulated by the G-protein beta gamma subunit complex.

M Di Girolamo 1, M G Silletta 1, M A De Matteis 1, A Braca 1, A Colanzi 1, D Pawlak 1, M M Rasenick 1, A Luini 1, D Corda 1
PMCID: PMC41472  PMID: 7624370

Abstract

Brefeldin A, a fungal metabolite that inhibits membrane transport, induces the mono(ADP-ribosyl)ation of two cytosolic proteins of 38 and 50 kDa as judged by SDS/PAGE. The 38-kDa substrate has been previously identified as glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We report that the 50-kDa BFA-induced ADP-ribosylated substrate (BARS-50) has native forms of 170 and 130 kDa, as determined by gel filtration of rat brain cytosol, indicating that BARS-50 might exist as a multimeric complex. BARS-50 can bind GTP, as indicated by blot-overlay studies with [alpha-32P]GTP and by photoaffinity labeling with guanosine 5'-[gamma-32P] [beta,gamma-(4-azidoanilido)]triphosphate. Moreover, ADP-ribosylation of BARS-50 was completely inhibited by the beta gamma subunit complex of G proteins, while the ADP-ribosylation of GAPDH was unmodified, indicating that this effect was due to an interaction of the beta gamma complex with BARS-50, rather than with the ADP-ribosylating enzyme. Two-dimensional gel electrophoresis and immunoblot analysis shows that BARS-50 is a group of closely related proteins that appear to be different from all the known GTP-binding proteins.

Full text

PDF
7067

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambesi-Impiombato F. S., Parks L. A., Coon H. G. Culture of hormone-dependent functional epithelial cells from rat thyroids. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3455–3459. doi: 10.1073/pnas.77.6.3455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brands J. H., Maassen J. A., van Hemert F. J., Amons R., Möller W. The primary structure of the alpha subunit of human elongation factor 1. Structural aspects of guanine-nucleotide-binding sites. Eur J Biochem. 1986 Feb 17;155(1):167–171. doi: 10.1111/j.1432-1033.1986.tb09472.x. [DOI] [PubMed] [Google Scholar]
  3. Clapham D. E., Neer E. J. New roles for G-protein beta gamma-dimers in transmembrane signalling. Nature. 1993 Sep 30;365(6445):403–406. doi: 10.1038/365403a0. [DOI] [PubMed] [Google Scholar]
  4. Colombo M. I., Mayorga L. S., Casey P. J., Stahl P. D. Evidence of a role for heterotrimeric GTP-binding proteins in endosome fusion. Science. 1992 Mar 27;255(5052):1695–1697. doi: 10.1126/science.1348148. [DOI] [PubMed] [Google Scholar]
  5. De Matteis M. A., Di Girolamo M., Colanzi A., Pallas M., Di Tullio G., McDonald L. J., Moss J., Santini G., Bannykh S., Corda D. Stimulation of endogenous ADP-ribosylation by brefeldin A. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1114–1118. doi: 10.1073/pnas.91.3.1114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Di Girolamo M., D'Arcangelo D., Cacciamani T., Gierschik P., Corda D. K-ras transformation greatly increases the toxin-dependent ADP-ribosylation of GTP binding proteins in thyroid cells. Involvement of an inhibitor of the ADP-ribosylation reaction. J Biol Chem. 1992 Aug 25;267(24):17397–17403. [PubMed] [Google Scholar]
  7. Donaldson J. G., Cassel D., Kahn R. A., Klausner R. D. ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein beta-COP to Golgi membranes. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6408–6412. doi: 10.1073/pnas.89.14.6408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Donaldson J. G., Kahn R. A., Lippincott-Schwartz J., Klausner R. D. Binding of ARF and beta-COP to Golgi membranes: possible regulation by a trimeric G protein. Science. 1991 Nov 22;254(5035):1197–1199. doi: 10.1126/science.1957170. [DOI] [PubMed] [Google Scholar]
  9. Donaldson J. G., Lippincott-Schwartz J., Klausner R. D. Guanine nucleotides modulate the effects of brefeldin A in semipermeable cells: regulation of the association of a 110-kD peripheral membrane protein with the Golgi apparatus. J Cell Biol. 1991 Feb;112(4):579–588. doi: 10.1083/jcb.112.4.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Doucet J. P., Tuana B. S. Identification of low molecular weight GTP-binding proteins and their sites of interaction in subcellular fractions from skeletal muscle. J Biol Chem. 1991 Sep 15;266(26):17613–17620. [PubMed] [Google Scholar]
  11. Gibson T. J., Hyvönen M., Musacchio A., Saraste M., Birney E. PH domain: the first anniversary. Trends Biochem Sci. 1994 Sep;19(9):349–353. doi: 10.1016/0968-0004(94)90108-2. [DOI] [PubMed] [Google Scholar]
  12. Gill D. M., Woolkalis M. J. Cholera toxin-catalyzed [32P]ADP-ribosylation of proteins. Methods Enzymol. 1991;195:267–280. doi: 10.1016/0076-6879(91)95172-g. [DOI] [PubMed] [Google Scholar]
  13. Gordon J. H., Rasenick M. M. In situ binding of a photo-affinity GTP analog to synaptic membrane G-proteins. Distribution of bound GTP analog reflects the status of adenylate cyclase. FEBS Lett. 1988 Aug 1;235(1-2):201–206. doi: 10.1016/0014-5793(88)81262-6. [DOI] [PubMed] [Google Scholar]
  14. Hansen S. H., Casanova J. E. Gs alpha stimulates transcytosis and apical secretion in MDCK cells through cAMP and protein kinase A. J Cell Biol. 1994 Aug;126(3):677–687. doi: 10.1083/jcb.126.3.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hilz H., Koch R., Fanick W., Klapproth K., Adamietz P. Nonenzymic ADP-ribosylation of specific mitochondrial polypeptides. Proc Natl Acad Sci U S A. 1984 Jul;81(13):3929–3933. doi: 10.1073/pnas.81.13.3929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jacobson M. K., Loflin P. T., Aboul-Ela N., Mingmuang M., Moss J., Jobson E. L. Modification of plasma membrane protein cysteine residues by ADP-ribose in vivo. J Biol Chem. 1990 Jul 5;265(19):10825–10828. [PubMed] [Google Scholar]
  17. Klausner R. D., Donaldson J. G., Lippincott-Schwartz J. Brefeldin A: insights into the control of membrane traffic and organelle structure. J Cell Biol. 1992 Mar;116(5):1071–1080. doi: 10.1083/jcb.116.5.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kots AYa, Skurat A. V., Sergienko E. A., Bulargina T. V., Severin E. S. Nitroprusside stimulates the cysteine-specific mono(ADP-ribosylation) of glyceraldehyde-3-phosphate dehydrogenase from human erythrocytes. FEBS Lett. 1992 Mar 23;300(1):9–12. doi: 10.1016/0014-5793(92)80153-8. [DOI] [PubMed] [Google Scholar]
  19. Leyte A., Barr F. A., Kehlenbach R. H., Huttner W. B. Multiple trimeric G-proteins on the trans-Golgi network exert stimulatory and inhibitory effects on secretory vesicle formation. EMBO J. 1992 Dec;11(13):4795–4804. doi: 10.1002/j.1460-2075.1992.tb05585.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lohse M. J. Molecular mechanisms of membrane receptor desensitization. Biochim Biophys Acta. 1993 Nov 7;1179(2):171–188. doi: 10.1016/0167-4889(93)90139-g. [DOI] [PubMed] [Google Scholar]
  21. Moss J., Vaughan M. ADP-ribosylation of guanyl nucleotide-binding regulatory proteins by bacterial toxins. Adv Enzymol Relat Areas Mol Biol. 1988;61:303–379. doi: 10.1002/9780470123072.ch6. [DOI] [PubMed] [Google Scholar]
  22. Ohashi M., Huttner W. B. An elevation of cytosolic protein phosphorylation modulates trimeric G-protein regulation of secretory vesicle formation from the trans-Golgi network. J Biol Chem. 1994 Oct 7;269(40):24897–24905. [PubMed] [Google Scholar]
  23. Pimplikar S. W., Simons K. Regulation of apical transport in epithelial cells by a Gs class of heterotrimeric G protein. Nature. 1993 Apr 1;362(6419):456–458. doi: 10.1038/362456a0. [DOI] [PubMed] [Google Scholar]
  24. Rasenick M. M., Talluri M., Dunn W. J., 3rd Photoaffinity guanosine 5'-triphosphate analogs as a tool for the study of GTP-binding proteins. Methods Enzymol. 1994;237:100–110. doi: 10.1016/s0076-6879(94)37055-9. [DOI] [PubMed] [Google Scholar]
  25. Rasenick M. M., Wang N. Exchange of guanine nucleotides between tubulin and GTP-binding proteins that regulate adenylate cyclase: cytoskeletal modification of neuronal signal transduction. J Neurochem. 1988 Jul;51(1):300–311. doi: 10.1111/j.1471-4159.1988.tb04870.x. [DOI] [PubMed] [Google Scholar]
  26. Tanaka Y., Yoshihara K., Kamiya T. Enzymic and nonenzymic mono ADP-ribosylation of proteins in skeletal muscle. Biochem Biophys Res Commun. 1989 Sep 15;163(2):1063–1070. doi: 10.1016/0006-291x(89)92329-2. [DOI] [PubMed] [Google Scholar]
  27. Touhara K., Inglese J., Pitcher J. A., Shaw G., Lefkowitz R. J. Binding of G protein beta gamma-subunits to pleckstrin homology domains. J Biol Chem. 1994 Apr 8;269(14):10217–10220. [PubMed] [Google Scholar]
  28. Ueda K., Hayaishi O. ADP-ribosylation. Annu Rev Biochem. 1985;54:73–100. doi: 10.1146/annurev.bi.54.070185.000445. [DOI] [PubMed] [Google Scholar]
  29. Vallee R. B. Purification of brain microtubules and microtubule-associated protein 1 using taxol. Methods Enzymol. 1986;134:104–115. doi: 10.1016/0076-6879(86)34079-5. [DOI] [PubMed] [Google Scholar]
  30. Walsh M. J., Kuruc N. The postsynaptic density: constituent and associated proteins characterized by electrophoresis, immunoblotting, and peptide sequencing. J Neurochem. 1992 Aug;59(2):667–678. doi: 10.1111/j.1471-4159.1992.tb09421.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES