Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1974 Jul;10(1):227–235. doi: 10.1128/iai.10.1.227-235.1974

Characterization of Cell-Associated Dextransucrase Activity from Glucose-Grown Cells of Streptococcus mutans

Howard K Kuramitsu 1
PMCID: PMC414982  PMID: 4842704

Abstract

Two distinct forms of cell-associated dextransucrase activity have been extracted from glucose-grown cells of Streptococcus mutans GS-5. One form can be washed from cells by treatment with hypertonic salt solutions. This activity is located on the exterior of the cell since it is susceptible to inactivation by proteolytic enzymes. Gel filtration of the extracted enzyme indicates that the enzyme exists as a highly aggregated complex which dissociates into a smaller soluble species in the presence of hypertonic salt solutions. This form of the enzyme also plays a role in sucrose-dependent adherence of whole cells to smooth surfaces. Hypertonic salt solutions also elute most of the cell-associated dextransucrase activity from strain FA-1 but not from strain HS-6. The second cell-associated activity of strain GS-5 is released after disruption of washed cells, is not susceptible to proteolytic enzyme treatment of whole cells, and represents the intracellular form of the enzyme. A comparison of the gel filtration properties. pH and temperature optima, kinetic constants, and insoluble dextran-synthesizing activities of the two cell-associated forms of the enzyme with the extracellular enzyme did not reveal any major differences.

Full text

PDF
228

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bratthall D. Demonstration of five serological groups of streptococcal strains resembling Streptococcus mutans. Odontol Revy. 1970;21(2):143–152. [PubMed] [Google Scholar]
  2. Brown A. T., Wittenberger C. L. Fructose-1,6-diphosphate-dependent lactate dehydrogenase from a cariogenic streptococcus: purification and regulatory properties. J Bacteriol. 1972 May;110(2):604–615. doi: 10.1128/jb.110.2.604-615.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Evans R. T., Genco R. J. Inhibition of glucosyltransferase activity by antisera to known serotypes of Streptococcus mutans. Infect Immun. 1973 Feb;7(2):237–241. doi: 10.1128/iai.7.2.237-241.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gibbons R. J., Nygaard M. Synthesis of insoluble dextran and its significance in the formation of gelatinous deposits by plaque-forming streptococci. Arch Oral Biol. 1968 Oct;13(10):1249–1262. doi: 10.1016/0003-9969(68)90081-2. [DOI] [PubMed] [Google Scholar]
  5. Gibbons R. J. Presence of an invertase-like enzyme and a sucrose permeation system in strains of Streptococcus mutans. Caries Res. 1972;6(2):122–131. doi: 10.1159/000259784. [DOI] [PubMed] [Google Scholar]
  6. Guggenheim B., Newbrun E. Extracellular glucosyltransferase activity of an HS strain of Streptococcus mutans. Helv Odontol Acta. 1969 Oct;13(2):84–97. [PubMed] [Google Scholar]
  7. Kuramitsu H. K. Characterization of invertase activity from cariogenic Streptococcus mutans. J Bacteriol. 1973 Sep;115(3):1003–1010. doi: 10.1128/jb.115.3.1003-1010.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Mukasa H., Slade H. D. Mechanism of adherence of Streptococcus mutans to smooth surfaces. II. Nature of the binding site and the adsorption of dextran-levan synthetase enzymes on the cell-wall surface of the streptococcus. Infect Immun. 1974 Feb;9(2):419–429. doi: 10.1128/iai.9.2.419-429.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Olson G. A., Bleiweis A. S., Small P. A., Jr Adherence inhibition of Streptococcus mutans: an assay reflecting a possible role of antibody in dental caries prophylaxis. Infect Immun. 1972 Apr;5(4):419–427. doi: 10.1128/iai.5.4.419-427.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Robrish S. A., Reid W., Krichevsky M. I. Distribution of enzymes forming polysaccharide from sucrose and the composition of extracellular polysaccharide synthesized by Streptococcus mutans. Appl Microbiol. 1972 Aug;24(2):184–190. doi: 10.1128/am.24.2.184-190.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Schachtele C. F., Loken A. E., Knudson D. J. Preferential utilization of the glucosyl moiety of sucrose by a cariogenic strain of Streptococcus mutans. Infect Immun. 1972 Apr;5(4):531–536. doi: 10.1128/iai.5.4.531-536.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Scherp H. W. Dental caries: prospects for prevention. Science. 1971 Sep 24;173(4003):1199–1205. doi: 10.1126/science.173.4003.1199. [DOI] [PubMed] [Google Scholar]
  14. TSUCHIYA H. M. Dextransucrase. Bull Soc Chim Biol (Paris) 1960;42:1777–1788. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES