Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1975 Dec;12(6):1415–1425. doi: 10.1128/iai.12.6.1415-1425.1975

Effect of dextranase on the extracellular polysaccharide synthesis of Streptococcus mutans; chemical and scanning electron microscopy studies.

S Hamada, J Mizuno, Y Murayama, Y Ooshima, N Masuda
PMCID: PMC415451  PMID: 1205620

Abstract

A dextranase preparation (AD17) partially purified from a culture liquor of Spicaria violacea strain IFO 6120 significantly inhibited the formation of artifcial dental plaque on a steel wire or on an extracted tooth surface. Changes in the surface morphology of Streptococcus mutans cells due to AD17 action were studied using scanning electron microscopy. S. mutans cells grown in 5% sucrose-containing broth were coated with sticky amorphous capsule-like material, whereas cells grown in sucrose in the presence of AD17 or in glucose instead of sucrose did not synthesize such capsular material. AK17 degraded commercially available dextrans of molecular weight 7 X 1(04) and 2 X 10(6) to liberate glucose and various oligosaccharides, including isomaltose. On the other hand, AD17 hydrolyzed the extracellular polysaccharides (mainly glucan in nature) of some strains of S. mutans to a limited degree. Only 15 to 36% of the total polysaccharides were hydrolyzed by AD1M with little release of isomaltose. Prolonged incubation of the polysaccharides from S. mutans with AD17 did not release additional reducing sugars, which indicates that AD17 did not contain alpha-1,3-glucanase activity. These results suggest that glucosidic linkages which are susceptible to AD17 may play an important role in the adherence of S. mutans cells to smooth surfaces.

Full text

PDF
1418

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAILEY R. W., ROBERTON A. M. Carbohydrases of a rumen strain of Lactobacillus bifidus. 2. The intracellular alpha-1-6-glucosidase (isomaltodextrinase). Biochem J. 1962 Feb;82:272–277. doi: 10.1042/bj0820272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baird J. K., Longyear V. M., Ellwood D. C. Water insoluble and soluble glucans produced by extracellular glycosyltransferases from Streptococcus mutans. Microbios. 1973 Sep-Oct;8(30):143–150. [PubMed] [Google Scholar]
  3. Bowen W. H. Effects of dextranase on cariogenic and non-cariogenic dextrans. Br Dent J. 1968 Apr 16;124(8):347–349. [PubMed] [Google Scholar]
  4. Dewar M. D., Walker G. J. Metabolism of the polysaccharides of human dental plaque. I. Dextranase activity of streptococci, and the extracellular polysaccharides synthesized from sucrose. Caries Res. 1975;9(1):21–35. doi: 10.1159/000260139. [DOI] [PubMed] [Google Scholar]
  5. Fitzgerald R. J., Spinell D. M., Stoudt T. H. Enzymatic removal of artificial plaques. Arch Oral Biol. 1968 Jan;13(1):125–128. doi: 10.1016/0003-9969(68)90042-3. [DOI] [PubMed] [Google Scholar]
  6. Fukui K., Fukui Y., Moriyama T. Purification and properties of dextransucrase and invertase from Streptococcus mutans. J Bacteriol. 1974 Jun;118(3):796–804. doi: 10.1128/jb.118.3.796-804.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gibbons R. J., Nygaard M. Synthesis of insoluble dextran and its significance in the formation of gelatinous deposits by plaque-forming streptococci. Arch Oral Biol. 1968 Oct;13(10):1249–1262. doi: 10.1016/0003-9969(68)90081-2. [DOI] [PubMed] [Google Scholar]
  8. Guggenheim B., Burckhardt J. J. Isolation and properties of a dextranase from streptococcus mutans OMZ 176. Helv Odontol Acta. 1974 Oct;18(2):101–113. [PubMed] [Google Scholar]
  9. Guggenheim B. Enzymatic hydrolysis and structure of water-insoluble glucan produced by glucosyltransferases from a strain of streptococcus mutans. Helv Odontol Acta. 1970 Nov;14(Suppl):89+–89+. [PubMed] [Google Scholar]
  10. Guggenheim B., Regolati B., Mühlemann H. R. Caries and plaque inhibition by mutanase in rats. Caries Res. 1972;6(4):289–297. doi: 10.1159/000259808. [DOI] [PubMed] [Google Scholar]
  11. Guggenheim B., Schroeder H. E. Biochemical and morphological aspects of extracellular polysaccharides produced by cariogenic streptococci. Helv Odontol Acta. 1967 Oct;11(2):131–152. [PubMed] [Google Scholar]
  12. Hiraoka N., Tsuji H., Fukumoto J., Yamamoto T., Tsuru D. Studies on mold dextranases. Some physicochemical properties and substrate specificity of dextranases obtained from Aspergillus carneus and Penicillium luteum. Int J Pept Protein Res. 1973;5(3):161–169. doi: 10.1111/j.1399-3011.1973.tb02331.x. [DOI] [PubMed] [Google Scholar]
  13. Hoffman S., Tow H. D., Cole J. S., 3rd Scanning electron microscope studies of dextranase-treated plaque streptococci. J Dent Res. 1973 May-Jun;52(3):551–557. doi: 10.1177/00220345730520032901. [DOI] [PubMed] [Google Scholar]
  14. Johnson M. C., Bozzola J. J., Shechmeister I. L. Morphological study of Streptococcus mutans and two extracellular polysaccharide mutants. J Bacteriol. 1974 Apr;118(1):304–311. doi: 10.1128/jb.118.1.304-311.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. König K. G., Guggenheim B. In-vivo effects of dextranase on plaque and caries. Helv Odontol Acta. 1968 Oct;12(2):48–55. [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. McCabe R. M., Keyes P. H., Howell A., Jr An in vitro method for assessing the plaque forming ability of oral bacteria. Arch Oral Biol. 1967 Dec;12(12):1653–1656. doi: 10.1016/0003-9969(67)90200-2. [DOI] [PubMed] [Google Scholar]
  18. Minah G. E., Loesche W. J., Dziewiatkowski D. D. The in-vitro effect of fungal dextranase on human dental plaque. Arch Oral Biol. 1972 Jan;17(1):35–42. doi: 10.1016/0003-9969(72)90131-8. [DOI] [PubMed] [Google Scholar]
  19. Mukasa H., Slade H. D. Mechanism of adherence of Streptococcus mutans to smooth surfaces. I. Roles of insoluble dextran-levan synthetase enzymes and cell wall polysaccharide antigen in plaque formation. Infect Immun. 1973 Oct;8(4):555–562. doi: 10.1128/iai.8.4.555-562.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mukasa H., Slade H. D. Mechanism of adherence of Streptococcus mutans to smooth surfaces. II. Nature of the binding site and the adsorption of dextran-levan synthetase enzymes on the cell-wall surface of the streptococcus. Infect Immun. 1974 Feb;9(2):419–429. doi: 10.1128/iai.9.2.419-429.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Murayama Y., Wada H., Hayashi H., Uchida T., Yokomizo E. Effects of dextranase from Spicaria violaceae (IFO 6120) on the polysaccharides produced by oral streptococci and on human dental plaque. J Dent Res. 1973 Jul-Aug;52(4):658–667. doi: 10.1177/00220345730520040401. [DOI] [PubMed] [Google Scholar]
  22. Nalbandian J., Freedman M. L., Tanzer J. M., Lovelace S. M. Ultrastructure of Mutants of Streptococcus mutans with Reference to Agglutination, Adhesion, and Extracellular Polysaccharide. Infect Immun. 1974 Nov;10(5):1170–1179. doi: 10.1128/iai.10.5.1170-1179.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Newbrun E. Extracellular polysaccharides synthesized by glucosyltransferases of oral streptococci. Composition and susceptibility to hydrolysis. Caries Res. 1972;6(2):132–147. doi: 10.1159/000259785. [DOI] [PubMed] [Google Scholar]
  24. Perch B., Kjems E., Ravn T. Biochemical and serological properties of Streptococcus mutans from various human and animal sources. Acta Pathol Microbiol Scand B Microbiol Immunol. 1974 Jun;82(3):357–370. doi: 10.1111/j.1699-0463.1974.tb02338.x. [DOI] [PubMed] [Google Scholar]
  25. Robrish S. A., Reid W., Krichevsky M. I. Distribution of enzymes forming polysaccharide from sucrose and the composition of extracellular polysaccharide synthesized by Streptococcus mutans. Appl Microbiol. 1972 Aug;24(2):184–190. doi: 10.1128/am.24.2.184-190.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sawai T., Toriyama K., Yano K. A bacterial dextranase releasing only isomaltose from dextrans. J Biochem. 1974 Jan;75(1):105–112. doi: 10.1093/oxfordjournals.jbchem.a130363. [DOI] [PubMed] [Google Scholar]
  27. Staat R. H., Schachtele C. F. Evaluation of dextranase production by the cariogenic bacterium Streptococcus mutans. Infect Immun. 1974 Feb;9(2):467–469. doi: 10.1128/iai.9.2.467-469.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. TSUCHIYA H. M., JEANES A., BRICKER H. M., WILHAM C. A. Dextran-degrading enzymes from molds. J Bacteriol. 1952 Oct;64(4):513–519. doi: 10.1128/jb.64.4.513-519.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tanzer J. M., Freedman M. L., Fitzgerald R. J., Larson R. H. Diminished virulence of glucan synthesis-defective mutants of Streptococcus mutans. Infect Immun. 1974 Jul;10(1):197–203. doi: 10.1128/iai.10.1.197-203.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Van Handel E. Determination of fructose and fructose-yielding carbohydrates with cold anthrone. Anal Biochem. 1967 Apr;19(1):193–194. doi: 10.1016/0003-2697(67)90152-2. [DOI] [PubMed] [Google Scholar]
  31. Walker G. J. Some properties of a dextranglucosidase isolated from oral streptococci and its use in studies on dextran synthesis. J Dent Res. 1972 Mar-Apr;51(2):409–414. doi: 10.1177/00220345720510022901. [DOI] [PubMed] [Google Scholar]
  32. de Stoppelaar J. D., König K. G., Plasschaert A. J., van der Hoeven J. S. Decreased cariogenicity of a mutant of Streptococcus mutans. Arch Oral Biol. 1971 Aug;16(8):971–975. doi: 10.1016/0003-9969(71)90186-5. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES