Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Aug 1;70(Pt 9):o905–o906. doi: 10.1107/S1600536814016006

Crystal structure of N 1-phenyl-N 4-[(quinolin-2-yl)methyl­idene]benzene-1,4-di­amine

Md Serajul Haque Faizi a, Ashraf Mashrai b, Saleem Garandal c, M Shahid b,*
PMCID: PMC4186095  PMID: 25309245

Abstract

In the title compound, C22H17N3, the dihedral angles between the central benzene ring and the terminal phenyl ring and quinoline ring system (r.m.s. deviation = 0.027 Å) are 44.72 (7) and 9.02 (4)°, respectively, and the bond-angle sum at the amine N atom is 359.9°. In the crystal, the N—H group is not involved in hydrogen bonding and the mol­ecules are linked by weak C—H⋯π inter­actions, generating [010] chains.

Keywords: crystal structure, quinoline, C—H⋯π inter­actions

Related literature  

For applications of quinoline-containing Schiff bases see: Das et al. (2013); Jursic et al. (2002); Motswainyana et al. (2013); Song et al. (2011). The present work is part of an ongoing structural study of Schiff base-metal complexes, see: Faizi & Hussain (2014); Faizi & Sen (2014); Faizi et al. (2014).graphic file with name e-70-0o905-scheme1.jpg

Experimental  

Crystal data  

  • C22H17N3

  • M r = 323.39

  • Monoclinic, Inline graphic

  • a = 17.595 (2) Å

  • b = 7.3348 (8) Å

  • c = 12.5712 (18) Å

  • β = 99.769 (6)°

  • V = 1598.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.29 × 0.21 × 0.15 mm

Data collection  

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.967, T max = 0.984

  • 6866 measured reflections

  • 2964 independent reflections

  • 1557 reflections with I > 2σ(I)

  • R int = 0.063

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.105

  • S = 0.97

  • 2964 reflections

  • 234 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenberg & Putz, 2006); software used to prepare material for publication: DIAMOND.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814016006/hb7248sup1.cif

e-70-0o905-sup1.cif (24.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814016006/hb7248Isup2.hkl

e-70-0o905-Isup2.hkl (142.5KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814016006/hb7248Isup3.cml

. DOI: 10.1107/S1600536814016006/hb7248fig1.tif

The mol­ecular structure of the title compound, with non-H atoms drawn as 40% probability displacement ellipsoids.

CCDC reference: 1012864

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1, Cg2 and Cg3 are the centroids of the N1/C1/C6–C9, C1–C6 and C11–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯Cg3i 0.93 2.61 3.430 (2) 148
C12—H12⋯Cg1i 0.93 2.79 3.536 (2) 138
C13—H13⋯Cg2i 0.93 2.71 3.508 (3) 145

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to the Department of Chemistry, IIT Kanpur, Kanpur-208016, India, for the data collection and Musheer Ahmad for valuable discussions.

supplementary crystallographic information

S1. Chemical context

Quinoline derivatives of Schiff bases are important building blocks of many important compounds widely used in biological applications such as anti­oxidative and anti­cancer and fluorescent probe agents in industry and in coordination chemistry (Motswainyana et al., 2013; Das et al., 2013; Song et al., 2011; Jursic et al., 2002). The present work is part of an ongoing structural study of Schiff base metal complexes (Faizi & Hussain, 2014; Faizi & Sen, 2014; Faizi et al. 2014) and we report here the structure of N1-phenyl-N4-[(quinolin-2-yl)methyl­idene]benzene-1,4-di­amine (PQMBD).

S2. Structural commentary

The synthesis of PQMBD by condensation of 2-quinoline­carboxaldehyde and N-phenyl-p-phenyl­enedi­amine has not previously been reported. In the title compound (Fig. 1) PQMBD has non planar structure, the dihedral angle between the quinolinyl and p-phenyl­enedi­amine rings is 9.02 (4)° and the dihedral angle between the p-phenyl­enedi­amine and N-phenyl rings is 44.72 (7)°. The imine group displays a torsional angle (C9—C10—N2—C11) of 179.20 (2)°.

S3. Supra­molecular features

In the crystal, the N—H group is not involved in hydrogen bonding and the molecules are linked by weak C—H···π inter­actions, generating [010] chains.

S4. Database survey

There are very few examples similar to title compound and their metal complex have been reported in the literature (Patra & Goldberg 2003; Gonzalez et al., 2012).

S5. Synthesis and crystallization

100 mg (1 mmol) of N-phenyl-p-phenyl­enedi­amine were dissolved in 10 ml of absolute ethanol. To this solution, 85 mg (1 mmol) of 2-quinoline­carboxaldehyde in 5 ml of absolute ethanol was dropwisely added under stirring. Then, this mixture was stirred for 10 min, two drops of glacial acetic acid were then added and the mixture was further refluxed for 2 h. The resulting yellow precipitate was recovered by filtration, washed several times with a small portions of EtOH and then with di­ethyl ether to give 150 mg (88%) of the title compound. Yellow blocks were obtained within 3 days by slow evaporation of the MeOH solvent.

S6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. the N-bound H-atoms were located in difference Fourier maps,and their positions were then held fixed. All H-atoms were positioned geometrically and refined using a riding model with C—H = 0.92–0.93 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with non-H atoms drawn as 40% probability displacement ellipsoids.

Crystal data

C22H17N3 F(000) = 680
Mr = 323.39 Dx = 1.343 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 999 reflections
a = 17.595 (2) Å θ = 2.6–28.6°
b = 7.3348 (8) Å µ = 0.08 mm1
c = 12.5712 (18) Å T = 100 K
β = 99.769 (6)° Block, yellow
V = 1598.9 (4) Å3 0.29 × 0.21 × 0.15 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer 2964 independent reflections
Radiation source: fine-focus sealed tube 1557 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.063
ω–scans θmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −19→21
Tmin = 0.967, Tmax = 0.984 k = −8→8
6866 measured reflections l = −12→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105 H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.033P)2] where P = (Fo2 + 2Fc2)/3
2964 reflections (Δ/σ)max < 0.001
234 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.25415 (13) 0.2764 (3) 0.16305 (19) 0.0148 (6)
C2 0.18560 (13) 0.3785 (3) 0.1579 (2) 0.0186 (6)
H2 0.1771 0.4464 0.2173 0.022*
C3 0.13189 (14) 0.3776 (3) 0.0660 (2) 0.0209 (6)
H3 0.0869 0.4454 0.0635 0.025*
C4 0.14301 (14) 0.2766 (3) −0.0251 (2) 0.0215 (7)
H4 0.1059 0.2777 −0.0873 0.026*
C5 0.20884 (14) 0.1767 (3) −0.0211 (2) 0.0208 (6)
H5 0.2164 0.1100 −0.0813 0.025*
C6 0.26537 (14) 0.1730 (3) 0.07237 (19) 0.0155 (6)
C7 0.33399 (13) 0.0704 (3) 0.08109 (19) 0.0173 (6)
H7 0.3429 −0.0027 0.0240 0.021*
C8 0.38676 (14) 0.0787 (3) 0.1728 (2) 0.0174 (6)
H8 0.4318 0.0101 0.1798 0.021*
C9 0.37258 (14) 0.1929 (3) 0.2577 (2) 0.0157 (6)
C10 0.43043 (15) 0.2137 (3) 0.3554 (2) 0.0163 (6)
C11 0.55486 (14) 0.1692 (3) 0.4537 (2) 0.0138 (6)
C12 0.62578 (13) 0.0883 (3) 0.44931 (19) 0.0179 (6)
H12 0.6325 0.0252 0.3874 0.022*
C13 0.68652 (13) 0.0993 (3) 0.5345 (2) 0.0182 (6)
H13 0.7332 0.0432 0.5296 0.022*
C14 0.67803 (14) 0.1942 (3) 0.62763 (19) 0.0159 (6)
C15 0.60659 (14) 0.2723 (3) 0.6334 (2) 0.0182 (6)
H15 0.5996 0.3345 0.6955 0.022*
C16 0.54638 (13) 0.2585 (3) 0.54833 (19) 0.0180 (6)
H16 0.4990 0.3101 0.5543 0.022*
C17 0.81614 (14) 0.1848 (3) 0.7206 (2) 0.0159 (6)
C18 0.85238 (14) 0.2256 (3) 0.6337 (2) 0.0196 (6)
H18 0.8234 0.2653 0.5691 0.023*
C19 0.93117 (15) 0.2075 (3) 0.6429 (2) 0.0246 (7)
H19 0.9548 0.2354 0.5841 0.030*
C20 0.97548 (15) 0.1486 (3) 0.7378 (2) 0.0286 (7)
H20 1.0285 0.1349 0.7431 0.034*
C21 0.93964 (15) 0.1103 (3) 0.8252 (2) 0.0282 (7)
H21 0.9690 0.0731 0.8901 0.034*
C22 0.86074 (14) 0.1270 (3) 0.8167 (2) 0.0211 (7)
H22 0.8372 0.0993 0.8756 0.025*
N1 0.30802 (11) 0.2868 (2) 0.25571 (15) 0.0160 (5)
N2 0.49805 (11) 0.1482 (2) 0.36031 (15) 0.0165 (5)
N3 0.73653 (12) 0.2067 (3) 0.71688 (18) 0.0206 (6)
H3N 0.7212 (13) 0.233 (3) 0.779 (2) 0.034 (8)*
H10 0.4135 (11) 0.284 (3) 0.4156 (16) 0.016 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0146 (16) 0.0161 (14) 0.0142 (15) −0.0034 (12) 0.0040 (12) 0.0024 (11)
C2 0.0214 (16) 0.0176 (14) 0.0176 (17) −0.0046 (12) 0.0052 (13) 0.0003 (12)
C3 0.0174 (16) 0.0222 (15) 0.0226 (18) 0.0018 (12) 0.0021 (13) 0.0023 (13)
C4 0.0190 (17) 0.0225 (15) 0.0204 (17) −0.0068 (13) −0.0038 (12) 0.0032 (13)
C5 0.0271 (17) 0.0182 (15) 0.0172 (17) −0.0056 (13) 0.0041 (13) −0.0017 (12)
C6 0.0168 (16) 0.0146 (14) 0.0154 (16) −0.0047 (11) 0.0036 (12) 0.0020 (12)
C7 0.0236 (16) 0.0152 (14) 0.0141 (16) −0.0031 (12) 0.0063 (13) −0.0006 (11)
C8 0.0189 (16) 0.0151 (14) 0.0200 (17) 0.0023 (11) 0.0086 (13) 0.0019 (12)
C9 0.0157 (16) 0.0138 (14) 0.0183 (16) −0.0033 (12) 0.0045 (12) 0.0027 (12)
C10 0.0195 (17) 0.0123 (14) 0.0180 (17) −0.0002 (12) 0.0056 (13) −0.0014 (12)
C11 0.0132 (15) 0.0132 (14) 0.0159 (16) −0.0024 (11) 0.0046 (12) 0.0022 (11)
C12 0.0227 (16) 0.0133 (14) 0.0182 (17) 0.0010 (12) 0.0045 (13) −0.0013 (11)
C13 0.0141 (16) 0.0167 (14) 0.0236 (18) 0.0053 (11) 0.0027 (13) 0.0018 (12)
C14 0.0180 (16) 0.0155 (14) 0.0134 (16) −0.0029 (12) 0.0007 (12) 0.0041 (12)
C15 0.0234 (17) 0.0144 (14) 0.0176 (16) −0.0012 (12) 0.0058 (13) −0.0013 (11)
C16 0.0160 (16) 0.0205 (15) 0.0190 (16) −0.0006 (11) 0.0069 (13) −0.0006 (12)
C17 0.0158 (16) 0.0132 (14) 0.0181 (16) −0.0023 (11) 0.0007 (12) −0.0015 (12)
C18 0.0189 (17) 0.0185 (14) 0.0206 (17) −0.0019 (12) 0.0012 (13) 0.0001 (12)
C19 0.0248 (17) 0.0296 (16) 0.0206 (17) −0.0071 (13) 0.0070 (13) −0.0038 (13)
C20 0.0177 (17) 0.0350 (17) 0.033 (2) −0.0028 (13) 0.0045 (15) −0.0060 (14)
C21 0.0247 (18) 0.0319 (17) 0.0254 (19) 0.0011 (13) −0.0031 (14) −0.0006 (13)
C22 0.0209 (17) 0.0212 (15) 0.0210 (18) −0.0025 (12) 0.0030 (13) 0.0022 (12)
N1 0.0139 (13) 0.0151 (11) 0.0190 (14) −0.0002 (10) 0.0026 (10) 0.0026 (9)
N2 0.0152 (13) 0.0157 (12) 0.0179 (14) −0.0014 (9) 0.0005 (10) 0.0025 (9)
N3 0.0185 (14) 0.0302 (14) 0.0137 (14) 0.0002 (10) 0.0041 (11) −0.0032 (11)

Geometric parameters (Å, º)

C1—N1 1.373 (3) C12—C13 1.381 (3)
C1—C6 1.411 (3) C12—H12 0.9300
C1—C2 1.412 (3) C13—C14 1.392 (3)
C2—C3 1.363 (3) C13—H13 0.9300
C2—H2 0.9300 C14—N3 1.391 (3)
C3—C4 1.405 (3) C14—C15 1.394 (3)
C3—H3 0.9300 C15—C16 1.375 (3)
C4—C5 1.364 (3) C15—H15 0.9300
C4—H4 0.9300 C16—H16 0.9300
C5—C6 1.405 (3) C17—C18 1.387 (3)
C5—H5 0.9300 C17—C22 1.391 (3)
C6—C7 1.411 (3) C17—N3 1.403 (3)
C7—C8 1.354 (3) C18—C19 1.378 (3)
C7—H7 0.9300 C18—H18 0.9300
C8—C9 1.412 (3) C19—C20 1.380 (3)
C8—H8 0.9300 C19—H19 0.9300
C9—N1 1.325 (3) C20—C21 1.384 (3)
C9—C10 1.464 (3) C20—H20 0.9300
C10—N2 1.275 (3) C21—C22 1.380 (3)
C10—H10 1.00 (2) C21—H21 0.9300
C11—C16 1.388 (3) C22—H22 0.9300
C11—C12 1.391 (3) N3—H3N 0.89 (2)
C11—N2 1.415 (3)
N1—C1—C6 123.0 (2) C12—C13—C14 120.1 (2)
N1—C1—C2 118.1 (2) C12—C13—H13 119.9
C6—C1—C2 118.9 (2) C14—C13—H13 119.9
C3—C2—C1 120.0 (2) N3—C14—C13 122.8 (2)
C3—C2—H2 120.0 N3—C14—C15 118.8 (2)
C1—C2—H2 120.0 C13—C14—C15 118.4 (2)
C2—C3—C4 121.4 (2) C16—C15—C14 120.8 (2)
C2—C3—H3 119.3 C16—C15—H15 119.6
C4—C3—H3 119.3 C14—C15—H15 119.6
C5—C4—C3 119.2 (2) C15—C16—C11 121.4 (2)
C5—C4—H4 120.4 C15—C16—H16 119.3
C3—C4—H4 120.4 C11—C16—H16 119.3
C4—C5—C6 121.1 (2) C18—C17—C22 118.9 (2)
C4—C5—H5 119.4 C18—C17—N3 122.6 (2)
C6—C5—H5 119.4 C22—C17—N3 118.5 (2)
C5—C6—C1 119.3 (2) C19—C18—C17 120.3 (2)
C5—C6—C7 123.4 (2) C19—C18—H18 119.9
C1—C6—C7 117.3 (2) C17—C18—H18 119.9
C8—C7—C6 119.7 (2) C18—C19—C20 121.0 (3)
C8—C7—H7 120.1 C18—C19—H19 119.5
C6—C7—H7 120.1 C20—C19—H19 119.5
C7—C8—C9 119.2 (2) C19—C20—C21 118.9 (3)
C7—C8—H8 120.4 C19—C20—H20 120.6
C9—C8—H8 120.4 C21—C20—H20 120.6
N1—C9—C8 123.7 (2) C22—C21—C20 120.6 (3)
N1—C9—C10 115.7 (2) C22—C21—H21 119.7
C8—C9—C10 120.6 (2) C20—C21—H21 119.7
N2—C10—C9 120.8 (2) C21—C22—C17 120.4 (3)
N2—C10—H10 123.5 (12) C21—C22—H22 119.8
C9—C10—H10 115.7 (12) C17—C22—H22 119.8
C16—C11—C12 117.6 (2) C9—N1—C1 117.0 (2)
C16—C11—N2 126.8 (2) C10—N2—C11 121.4 (2)
C12—C11—N2 115.6 (2) C14—N3—C17 128.1 (2)
C13—C12—C11 121.7 (2) C14—N3—H3N 115.3 (16)
C13—C12—H12 119.1 C17—N3—H3N 116.5 (16)
C11—C12—H12 119.1
N1—C1—C2—C3 177.5 (2) C13—C14—C15—C16 −1.1 (3)
C6—C1—C2—C3 −0.7 (3) C14—C15—C16—C11 −1.0 (3)
C1—C2—C3—C4 0.0 (4) C12—C11—C16—C15 2.2 (3)
C2—C3—C4—C5 0.3 (4) N2—C11—C16—C15 −179.0 (2)
C3—C4—C5—C6 0.2 (4) C22—C17—C18—C19 0.5 (3)
C4—C5—C6—C1 −0.9 (3) N3—C17—C18—C19 177.8 (2)
C4—C5—C6—C7 179.2 (2) C17—C18—C19—C20 0.1 (4)
N1—C1—C6—C5 −177.0 (2) C18—C19—C20—C21 −1.0 (4)
C2—C1—C6—C5 1.1 (3) C19—C20—C21—C22 1.4 (4)
N1—C1—C6—C7 2.9 (3) C20—C21—C22—C17 −0.8 (4)
C2—C1—C6—C7 −179.0 (2) C18—C17—C22—C21 −0.1 (3)
C5—C6—C7—C8 177.9 (2) N3—C17—C22—C21 −177.5 (2)
C1—C6—C7—C8 −2.0 (3) C8—C9—N1—C1 −2.9 (3)
C6—C7—C8—C9 −1.0 (3) C10—C9—N1—C1 177.1 (2)
C7—C8—C9—N1 3.7 (3) C6—C1—N1—C9 −0.5 (3)
C7—C8—C9—C10 −176.3 (2) C2—C1—N1—C9 −178.6 (2)
N1—C9—C10—N2 −171.1 (2) C9—C10—N2—C11 179.2 (2)
C8—C9—C10—N2 8.9 (3) C16—C11—N2—C10 0.0 (3)
C16—C11—C12—C13 −1.5 (3) C12—C11—N2—C10 178.8 (2)
N2—C11—C12—C13 179.6 (2) C13—C14—N3—C17 22.2 (4)
C11—C12—C13—C14 −0.5 (3) C15—C14—N3—C17 −161.0 (2)
C12—C13—C14—N3 178.6 (2) C18—C17—N3—C14 29.4 (4)
C12—C13—C14—C15 1.8 (3) C22—C17—N3—C14 −153.2 (2)
N3—C14—C15—C16 −178.0 (2)

Hydrogen-bond geometry (Å, º)

Cg1, Cg2 and Cg3 are the centroids of the N1/C1/C6–C9, C1–C6 and C11–C16 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C7—H7···Cg3i 0.93 2.61 3.430 (2) 148
C12—H12···Cg1i 0.93 2.79 3.536 (2) 138
C13—H13···Cg2i 0.93 2.71 3.508 (3) 145

Symmetry code: (i) −x+1, y−1/2, −z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7248).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Brandenberg, K. & Putz, H. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2003). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Das, P., Mandal, A. K., Reddy, G. U., Baidya, M., Ghosh, S. K. & Das, A. (2013). Org. Biomol. Chem. 11, 6604–6614. [DOI] [PubMed]
  5. Faizi, M. S. H. & Hussain, S. (2014). Acta Cryst. E70, m197. [DOI] [PMC free article] [PubMed]
  6. Faizi, M. S. H., Mashrai, A., Shahid, M. & Ahmad, M. (2014). Acta Cryst. E70, o806. [DOI] [PMC free article] [PubMed]
  7. Faizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m173. [DOI] [PMC free article] [PubMed]
  8. Jursic, B. S., Douelle, F., Bowdy, K. & Stevens, E. D. (2002). Tetrahedron Lett. 43, 5361–5365.
  9. Motswainyana, W. M., Onani, M. O., Madiehe, A. M., Saibu, M., Jacobs, J. & Meervelt, L. (2013). Inorg. Chim. Acta, 400, 197–202.
  10. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Song, S., Zhao, W., Wang, L., Redshaw, C., Wang, F. & Sun, W.-H. (2011). J. Organomet. Chem. 696, 3029–3035.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814016006/hb7248sup1.cif

e-70-0o905-sup1.cif (24.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814016006/hb7248Isup2.hkl

e-70-0o905-Isup2.hkl (142.5KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814016006/hb7248Isup3.cml

. DOI: 10.1107/S1600536814016006/hb7248fig1.tif

The mol­ecular structure of the title compound, with non-H atoms drawn as 40% probability displacement ellipsoids.

CCDC reference: 1012864

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES