Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1976 Jul;14(1):6–10. doi: 10.1128/iai.14.1.6-10.1976

Bactericidal mechanisms in rabbit alveolar macrophages: evidence against peroxidase and hydrogen peroxide bactericidal mechanisms.

W D Biggar, S Buron, B Holmes
PMCID: PMC420836  PMID: 7533

Abstract

The role of peroxidase-mediated bacterial killing by rabbit alveolar macrophages was examined. During 3 h of incubation in vitro, alveolar macrophages ingested and killed greater than 88% of the Streptococcus faecalis, Proteus mirabilis, or Streptococcus pneumoniae present in the incubation mixture. Preincubation of alveolar macrophages with inhibitors of catalase, 3-amino-1,2,4-triazole or sodium nitrite, did not alter their bactericidal potential. Iodination of ingested zymosan particles, a peroxidase-dependent and hydrogen peroxide-dependent reaction, was not observed, in spite of vigorous phagocytosis by alveolar macrophages. Furthermore, iodination by alveolar macrophages was not significantly increased when peroxidase-coated zymosan particles were ingested. The results suggest that hydrogen peroxide may not be available to the phagocytic vacuole for microbial killing. Since tetrazolium dye reduction reflects the activity of an oxidase responsible for stimulated oxygen consumption by polymorphonuclear leukocytes, this reaction was also measured. Rabbit alveolar macrophages incubated with latex particles did not exhibit an increased dye reduction compared with resting cells. The absence of significant stimulation of tetrazolium dye reduction indicates that the oxidase reaction does not occur in the proximity of the phagocytic vacuole of alveolar macrophages.

Full text

PDF
8

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. C., Yevich S. J., Orth R. W., Steele R. H. The superoxide anion and singlet molecular oxygen: their role in the microbicidal activity of the polymorphonuclear leukocyte. Biochem Biophys Res Commun. 1974 Oct 8;60(3):909–917. doi: 10.1016/0006-291x(74)90401-x. [DOI] [PubMed] [Google Scholar]
  2. Baehner R. L., Murrmann S. K., Davis J., Johnston R. B., Jr The role of superoxide anion and hydrogen peroxide in phagocytosis-associated oxidative metabolic reactions. J Clin Invest. 1975 Sep;56(3):571–576. doi: 10.1172/JCI108126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baehner R. L., Nathan D. G. Quantitative nitroblue tetrazolium test in chronic granulomatous disease. N Engl J Med. 1968 May 2;278(18):971–976. doi: 10.1056/NEJM196805022781801. [DOI] [PubMed] [Google Scholar]
  4. Biggar W. D., Buron S., Holmes B. Chronic granulomatous disease in an adult male: A proposed X-linked defect. J Pediatr. 1976 Jan;88(1):63–70. doi: 10.1016/s0022-3476(76)80728-7. [DOI] [PubMed] [Google Scholar]
  5. Biggar W. D., Holmes B., Good R. A. Opsonic defect in patients with cystic fibrosis of the pancreas. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1716–1719. doi: 10.1073/pnas.68.8.1716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DeChatelet L. R., Mulikin D., McCall C. E. The generation of superoxide anion by various types of phagocyte. J Infect Dis. 1975 Apr;131(4):443–446. doi: 10.1093/infdis/131.4.443. [DOI] [PubMed] [Google Scholar]
  7. Drath D. B., Karnovsky M. L. Superoxide production by phagocytic leukocytes. J Exp Med. 1975 Jan 1;141(1):257–262. doi: 10.1084/jem.141.1.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gee J. B., Vassallo C. L., Bell P., Kaskin J., Basford R. E., Field J. B. Catalase-dependent peroxidative metabolism in the alveolar macrophage during phagocytosis. J Clin Invest. 1970 Jun;49(6):1280–1287. doi: 10.1172/JCI106340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  10. Holmes B., Page A. R., Good R. A. Studies of the metabolic activity of leukocytes from patients with a genetic abnormality of phagocytic function. J Clin Invest. 1967 Sep;46(9):1422–1432. doi: 10.1172/JCI105634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. KAPLOW L. S. SIMPLIFIED MYELOPEROXIDASE STAIN USING BENZIDINE DIHYDROCHLORIDE. Blood. 1965 Aug;26:215–219. [PubMed] [Google Scholar]
  12. Karnovsky M. L. Chronic granulomatous disease--pieces of a cellular and molecular puzzle. Fed Proc. 1973 Apr;32(4):1527–1533. [PubMed] [Google Scholar]
  13. Klebanoff S. J. Antimicrobial activity of catalase at acid pH. Proc Soc Exp Biol Med. 1969 Nov;132(2):571–574. doi: 10.3181/00379727-132-34263. [DOI] [PubMed] [Google Scholar]
  14. Klebanoff S. J. Antimicrobial mechanisms in neutrophilic polymorphonuclear leukocytes. Semin Hematol. 1975 Apr;12(2):117–142. [PubMed] [Google Scholar]
  15. Klebanoff S. J., Hamon C. B. Role of myeloperoxidase-mediated antimicrobial systems in intact leukocytes. J Reticuloendothel Soc. 1972 Aug;12(2):170–196. [PubMed] [Google Scholar]
  16. Klebanoff S. J. Iodination of bacteria: a bactericidal mechanism. J Exp Med. 1967 Dec 1;126(6):1063–1078. doi: 10.1084/jem.126.6.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Klebanoff S. J., Pincus S. H. Hydrogen peroxide utilization in myeloperoxidase-deficient leukocytes: a possible microbicidal control mechanism. J Clin Invest. 1971 Oct;50(10):2226–2229. doi: 10.1172/JCI106718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lehrer R. I. Antifungal effects of peroxidase systems. J Bacteriol. 1969 Aug;99(2):361–365. doi: 10.1128/jb.99.2.361-365.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. MYRVIK Q., LEAKE E. S., FARISS B. Studies on pulmonary alveolar macrophages from the normal rabbit: a technique to procure them in a high state of purity. J Immunol. 1961 Feb;86:128–132. [PubMed] [Google Scholar]
  20. Nathan D. G., Baehner R. L., Weaver D. K. Failure of nitro blue tetrazolium reduction in the phagocytic vacuoles of leukocytes in chronic granulomatous disease. J Clin Invest. 1969 Oct;48(10):1895–1904. doi: 10.1172/JCI106156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ouchi E., Selvaraj R. J., Sbarra A. J. The biochemical activities of rabbit alveolar macrophages during phagocytosis. Exp Cell Res. 1965 Dec;40(3):456–468. doi: 10.1016/0014-4827(65)90226-0. [DOI] [PubMed] [Google Scholar]
  22. Paul B. B., Strauss R. R., Selvaraj R. J., Sbarra A. J. Peroxidase mediated antimicrobial activities of alveolar macrophage granules. Science. 1973 Aug 31;181(4102):849–850. doi: 10.1126/science.181.4102.849. [DOI] [PubMed] [Google Scholar]
  23. Pincus S. H., Klebanoff S. J. Quantitative leukocyte iodination. N Engl J Med. 1971 Apr 8;284(14):744–750. doi: 10.1056/NEJM197104082841402. [DOI] [PubMed] [Google Scholar]
  24. Romeo D., Cramer R., Marzi T., Soranzo M. R., Zabucchi G., Rossi F. Peroxidase activity of alveolar and peritoneal macrophages. J Reticuloendothel Soc. 1973 May;13(5):399–409. [PubMed] [Google Scholar]
  25. SBARRA A. J., KARNOVSKY M. L. The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J Biol Chem. 1959 Jun;234(6):1355–1362. [PubMed] [Google Scholar]
  26. STAHELIN H., KARNOVSKY M. L., FARNHAM A. E., SUTER E. Studies on the interaction between phagocytes and tubercle bacilli. III. Some metabolic effects in guinea pigs associated with infection with tubercle bacilli. J Exp Med. 1957 Mar 1;105(3):265–277. doi: 10.1084/jem.105.3.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sbarra A. J., Paul B. B., Jacobs A. A., Strauss R. R., Mitchell G. W., Jr Role of the phagocyte in host-parasite interactions. 38. Metabolic activities of the phagocyte as related to antimicrobial action. J Reticuloendothel Soc. 1972 Aug;12(2):109–126. [PubMed] [Google Scholar]
  28. Stossel T. P., Mason R. J., Pollard T. D., Vaughan M. Isolation and properties of phagocytic vesicles. II. Alveolar macrophages. J Clin Invest. 1972 Mar;51(3):604–614. doi: 10.1172/JCI106850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Strauss R. R., Paul B. B., Jacobs A. A., Sbarra A. J. Role of the Phagocyte in Host-Parasite Interactions XXVII. Myeloperoxidase-H(2)O(2)-Cl-Mediated Aldehyde Formation and Its Relationship to Antimicrobial Activity. Infect Immun. 1971 Apr;3(4):595–602. doi: 10.1128/iai.3.4.595-602.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Vogt M. T., Thomas C., Vassallo C. L., Basford R. E., Gee J. B. Glutathione-dependent peroxidative metabolism in the alveolar macrophage. J Clin Invest. 1971 Feb;50(2):401–410. doi: 10.1172/JCI106507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Weston P. D., Avrameas S. Proteins coupled to polyacrylamide beads using glutaraldehyde. Biochem Biophys Res Commun. 1971 Dec 17;45(6):1574–1580. doi: 10.1016/0006-291x(71)90200-2. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES