Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1978 May;20(2):325–333. doi: 10.1128/iai.20.2.325-333.1978

Effect of zinc and calcium ions on the production of alpha-toxin and proteases by Clostridium perfringens.

H Sato, Y Yamakawa, A Ito, R Murata
PMCID: PMC421858  PMID: 208976

Abstract

Clostridium perfringens produced at least three distinct proteases in a synthetic medium containing calcium. Two of them, thiol and ethylenediaminetetraacetic acid disodium salt-sensitive proteases, appeared at an early stage of growth, but the other one, perhaps being identical to the one produced in a calcium-deficient medium, appeared at a late stage. The production of these proteases depended on Ca2+ but not on Zn2+ in the medium. Alpha-toxin, perhaps being a zinc-containing metalloenzyme, was rather resistant to the proteases, but toxin, produced in a zinc-deficient medium or deprived of zinc with ethylenediaminetetraacetic acid disodium salt, was very sensitive. By adding Zn2+, the toxin lacking zinc may have been converted to the zinc-containing metalloprotein that is resistant to proteases. This may explain why alpha-toxin activity increased progressively in a zinc-containing medium in spite of simultaneous production of potent proteases and why it disappeared rapidly in a zinc-deficient medium.

Full text

PDF
328

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bissell M. J., Tosi R., Gorini L. Mechanism of excretion of a bacterial proteinase: factors controlling accumulation of the extracellular proteinase of a Sarcina strain (Coccus P). J Bacteriol. 1971 Mar;105(3):1099–1109. doi: 10.1128/jb.105.3.1099-1109.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Coleman P. L., Iweibo I., Weiner H. Role of zinc in horse liver alcohol dehydrogenase. Influence on structure and conformational changes. Biochemistry. 1972 Mar 14;11(6):1010–1018. doi: 10.1021/bi00756a010. [DOI] [PubMed] [Google Scholar]
  3. Etherington D. J., Newman P. B., Dainty R. H., Partridge S. M. Purification and properties of the extracellular metallo-proteinases of Chromobacterium lividum (NCIB 10926). Biochim Biophys Acta. 1976 Oct 11;445(3):739–752. doi: 10.1016/0005-2744(76)90124-8. [DOI] [PubMed] [Google Scholar]
  4. Harris M. I., Coleman J. E. The biosynthesis of apo- and metalloalkaline phosphatases of Escherichia coli. J Biol Chem. 1968 Oct 10;243(19):5063–5073. [PubMed] [Google Scholar]
  5. Li E., Yousten A. A. Metalloprotease from Bacillus thuringiensis. Appl Microbiol. 1975 Sep;30(3):354–361. doi: 10.1128/am.30.3.354-361.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lynch K. L., Moskowitz M. Effects of chelates in chemotherapy of experimental gas-gangrene toxemia. J Bacteriol. 1968 Dec;96(6):1925–1930. doi: 10.1128/jb.96.6.1925-1930.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Morihara K. Comparative specificity of microbial proteinases. Adv Enzymol Relat Areas Mol Biol. 1974;41(0):179–243. doi: 10.1002/9780470122860.ch5. [DOI] [PubMed] [Google Scholar]
  8. Murata R., Soda S., Yamamoto A., Ito A. Further investigations on the influence of inorganic cations on growth and toxin production by Clostridium perfringens PB6K. Jpn J Med Sci Biol. 1968 Feb;21(1):55–70. doi: 10.7883/yoken1952.21.55. [DOI] [PubMed] [Google Scholar]
  9. Murata R., Soda S., Yamamoto A., Sato H., Ito A. The effect of zinc on the production of various toxins of Clostridium perfringens. Jpn J Med Sci Biol. 1969 Jun;22(3):133–148. doi: 10.7883/yoken1952.22.133. [DOI] [PubMed] [Google Scholar]
  10. Nelbach M. E., Pigiet V. P., Jr, Gerhart J. C., Schachman H. K. A role for zinc in the quaternary structure of aspartate transcarbamylase from Escherichia coli. Biochemistry. 1972 Feb 1;11(3):315–327. doi: 10.1021/bi00753a002. [DOI] [PubMed] [Google Scholar]
  11. Oishi I., Okada T., Sakaguchi G. Responses of Clostridium botulinum type B and E progenitor toxins to some clostridial sulfhydryl-dependent proteases. Jpn J Med Sci Biol. 1975 Jun;28(3):157–164. doi: 10.7883/yoken1952.28.157. [DOI] [PubMed] [Google Scholar]
  12. Reynolds J. A., Schlesinger M. J. Alterations in the structure and function of Escherichia coli alkaline phosphatase due to Zn2+ binding. Biochemistry. 1969 Feb;8(2):588–593. doi: 10.1021/bi00830a019. [DOI] [PubMed] [Google Scholar]
  13. Sarner N. Z., Bissell M. J., Di Girolamo M., Gorini L. Mechanism of excretion of a bacterial proteinase: demonstration of two proteolytic enzymes produced by a Sarcina strain (Coccus P). J Bacteriol. 1971 Mar;105(3):1090–1098. doi: 10.1128/jb.105.3.1090-1098.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sato H., Kameyama S., Murata R. Immunogenicity of highly purified -toxoid of Clostridium perfringens. Jpn J Med Sci Biol. 1972 Feb;25(1):53–56. [PubMed] [Google Scholar]
  15. Sato H., Murata R. Role of zinc in the production of Clostridium perfringens alpha toxin. Infect Immun. 1973 Sep;8(3):360–369. doi: 10.1128/iai.8.3.360-369.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sato H., Yamakawa Y., Ito A., Murata R. Effect of protease on the production of Clostridium perfringens alpha toxin. Jpn J Med Sci Biol. 1977 Feb;30(1):44–46. [PubMed] [Google Scholar]
  17. Soda S., Ito A., Yamamoto A. Production and properties of theta-toxin of Clostridium perfringens with special reference to lethal activity. Jpn J Med Sci Biol. 1976 Dec;29(6):335–349. [PubMed] [Google Scholar]
  18. Soda S., Sato H., Murata R. The effect of calcium on the production of various toxins of Clostridium perfringens. Jpn J Med Sci Biol. 1969 Jun;22(3):175–179. doi: 10.7883/yoken1952.22.175. [DOI] [PubMed] [Google Scholar]
  19. Szajn H., Csopak H. Metal ion-induced conformational changes in Escherichia coli alkaline phosphatase. Biochim Biophys Acta. 1977 Jan 11;480(1):143–153. doi: 10.1016/0005-2744(77)90329-1. [DOI] [PubMed] [Google Scholar]
  20. Trotman C. N., Greenwood C. Effects of zinc and other metal ions on the stability and activity of Escherichia coli alkaline phosphatase. Biochem J. 1971 Aug;124(1):25–30. doi: 10.1042/bj1240025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wong K. P., Hamlin L. M. The role of Zn(II) on the folding of bovine carbonic anhydrase B. Arch Biochem Biophys. 1975 Sep;170(1):12–22. doi: 10.1016/0003-9861(75)90093-4. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES