Abstract
Oxidative damage to the vascular endothelium may play an important role in the pathogenesis of atherosclerosis and aging, and may account in part for reduced vascular prostacyclin (PGI2) synthesis associated with both conditions. Using H2O2 to induce injury, we investigated the effects of oxidative damage on PGI2 synthesis in cultured endothelial cells (EC). Preincubation of EC with H2O2 produced a dose-dependent inhibition (inhibitory concentration [IC50] = 35 microM) of PGI2 formation from arachidonate. The maximum dose-related effect occurred within 1 min after exposure although appreciable H2O2 remained after 30 min (30% of original). In addition, H2O2 produced both a time- and dose-dependent injury leading to cell disruption, lactate dehydrogenase release, and 51Cr release from prelabeled cells. However, in dramatic contrast to H2O2 effects on PGI2 synthesis, loss of cellular integrity required doses in excess of 0.5 mM and incubation times in excess of 1 h. The superoxide-generating system, xanthine plus xanthine oxidase, produced a similar inhibition of PGI2 formation. Such inhibition was dependent on the generation of H2O2 but not superoxide in that catalase was completely protective whereas superoxide dismutase was not. H2O2 (50 microM) also effectively inhibited basal and ionophore A23187 (0.5 microM)-stimulated PGI2 formation. However, H2O2 had no effect on phospholipase A2 activity, because ionophore A23187-induced arachidonate release was unimpaired. To determine the effects on cyclooxygenase and PGI2 synthase, prostaglandin products from cells prelabeled with [3H]arachidonate and stimulated with ionophore A23187, or products formed from exogenous arachidonate were examined. Inhibition of cyclooxygenase but not PGI2 synthase was observed. Incubation of H2O2-treated cells with prostaglandin cyclic endoperoxide indicated no inhibition of PGI2 synthase. Thus, in EC low doses of H2O2 potently inhibit cyclooxygenase after brief exposure whereas larger doses and prolonged exposure are required for classical cytolytic effects. Surprisingly, PGI2 synthase, which is known to be extremely sensitive to a variety of lipid peroxides, is not inhibited by H2O2. Lipid solubility, enzyme location within the EC membrane, or the local availability of reducing factors may explain these results, and may be important determinants of the response of EC to oxidative stress.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ager A., Gordon J. L. Differential effects of hydrogen peroxide on indices of endothelial cell function. J Exp Med. 1984 Feb 1;159(2):592–603. doi: 10.1084/jem.159.2.592. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Armstrong J. M., Lattimer N., Moncada S., Vane J. R. Comparison of the vasodepressor effects of prostacyclin and 6-oxo-prostaglandin F1alpha with those of prostaglandin E2 in rats and rabbits. Br J Pharmacol. 1978 Jan;62(1):125–130. doi: 10.1111/j.1476-5381.1978.tb07014.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Babior B. M. The respiratory burst of phagocytes. J Clin Invest. 1984 Mar;73(3):599–601. doi: 10.1172/JCI111249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Czervionke R. L., Smith J. B., Fry G. L., Hoak J. C., Haycraft D. L. Inhibition of prostacyclin by treatment of endothelium with aspirin. Correlation with platelet adherence. J Clin Invest. 1979 May;63(5):1089–1092. doi: 10.1172/JCI109379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dembińska-Kieć A., Rücker W., Schönhöfer P. S. Atherosclerosis decreased prostacyclin formation in rabbit lungs and kidneys. Prostaglandins. 1979 Jun;17(6):831–838. doi: 10.1016/0090-6980(79)90056-x. [DOI] [PubMed] [Google Scholar]
- Egan R. W., Paxton J., Kuehl F. A., Jr Mechanism for irreversible self-deactivation of prostaglandin synthetase. J Biol Chem. 1976 Dec 10;251(23):7329–7335. [PubMed] [Google Scholar]
- Eldor A., Falcone D. J., Hajjar D. P., Minick C. R., Weksler B. B. Recovery of prostacyclin production by de-endothelialized rabbit aorta. Critical role of neointimal smooth muscle cells. J Clin Invest. 1981 Mar;67(3):735–741. doi: 10.1172/JCI110090. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hajjar D. P., Weksler B. B., Falcone D. J., Hefton J. M., Tack-Goldman K., Minick C. R. Prostacyclin modulates cholesteryl ester hydrolytic activity by its effect on cyclic adenosine monophosphate in rabbit aortic smooth muscle cells. J Clin Invest. 1982 Sep;70(3):479–488. doi: 10.1172/JCI110639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ham E. A., Egan R. W., Soderman D. D., Gale P. H., Kuehl F. A., Jr Peroxidase-dependent deactivation of prostacyclin synthetase. J Biol Chem. 1979 Apr 10;254(7):2191–2194. [PubMed] [Google Scholar]
- Harlan J. M., Callahan K. S. Role of hydrogen peroxide in the neutrophil-mediated release of prostacyclin from cultured endothelial cells. J Clin Invest. 1984 Aug;74(2):442–448. doi: 10.1172/JCI111440. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harlan J. M., Killen P. D., Harker L. A., Striker G. E., Wright D. G. Neutrophil-mediated endothelial injury in vitro mechanisms of cell detachment. J Clin Invest. 1981 Dec;68(6):1394–1403. doi: 10.1172/JCI110390. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harlan J. M., Levine J. D., Callahan K. S., Schwartz B. R., Harker L. A. Glutathione redox cycle protects cultured endothelial cells against lysis by extracellularly generated hydrogen peroxide. J Clin Invest. 1984 Mar;73(3):706–713. doi: 10.1172/JCI111263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harman D. The aging process. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7124–7128. doi: 10.1073/pnas.78.11.7124. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hemler M. E., Cook H. W., Lands W. E. Prostaglandin biosynthesis can be triggered by lipid peroxides. Arch Biochem Biophys. 1979 Apr 1;193(2):340–345. doi: 10.1016/0003-9861(79)90038-9. [DOI] [PubMed] [Google Scholar]
- Hemler M. E., Lands W. E. Evidence for a peroxide-initiated free radical mechanism of prostaglandin biosynthesis. J Biol Chem. 1980 Jul 10;255(13):6253–6261. [PubMed] [Google Scholar]
- Huttner J. J., Gwebu E. T., Panganamala R. V., Milo G. E., Cornwell D. C., Sharma H. M., Geer J. C. Fatty acids and their prostaglandin derivatives: inhibitors of proliferation in aortic smooth muscle cells. Science. 1977 Jul 15;197(4300):289–291. doi: 10.1126/science.877555. [DOI] [PubMed] [Google Scholar]
- Jaffe E. A., Nachman R. L., Becker C. G., Minick C. R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973 Nov;52(11):2745–2756. doi: 10.1172/JCI107470. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kalyanaraman B., Mason R. P., Tainer B., Eling T. E. The free radical formed during the hydroperoxide-mediated deactivation of ram seminal vesicles is hemoprotein-derived. J Biol Chem. 1982 May 10;257(9):4764–4768. [PubMed] [Google Scholar]
- Kent R. S., Diedrich S. L., Whorton A. R. Regulation of vascular prostaglandin synthesis by metabolites of arachidonic acid in perfused rabbit aorta. J Clin Invest. 1983 Aug;72(2):455–465. doi: 10.1172/JCI110993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kent R. S., Kitchell B. B., Shand D. G., Whorton A. R. The ability of vascular tissue to produce prostacyclin decreases with age. Prostaglandins. 1981 Mar;21(3):483–490. doi: 10.1016/0090-6980(81)90093-9. [DOI] [PubMed] [Google Scholar]
- Kulmacz R. J., Lands W. E. Requirements for hydroperoxide by the cyclooxygenase and peroxidase activities of prostaglandin H synthase. Prostaglandins. 1983 Apr;25(4):531–540. doi: 10.1016/0090-6980(83)90025-4. [DOI] [PubMed] [Google Scholar]
- Mazzone T., Jensen M., Chait A. Human arterial wall cells secrete factors that are chemotactic for monocytes. Proc Natl Acad Sci U S A. 1983 Aug;80(16):5094–5097. doi: 10.1073/pnas.80.16.5094. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nathan C. F., Arrick B. A., Murray H. W., DeSantis N. M., Cohn Z. A. Tumor cell anti-oxidant defenses. Inhibition of the glutathione redox cycle enhances macrophage-mediated cytolysis. J Exp Med. 1981 Apr 1;153(4):766–782. doi: 10.1084/jem.153.4.766. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Brien P. J., Hulett L. G. Hydroxyl radical involvement in the luminol chemiluminescence from the reaction of arachidonic acid with sheep vesicular gland microsomes. Prostaglandins. 1980 May;19(5):683–691. doi: 10.1016/0090-6980(80)90167-7. [DOI] [PubMed] [Google Scholar]
- Pearson J. D., Carleton J. S., Gordon J. L. Metabolism of adenine nucleotides by ectoenzymes of vascular endothelial and smooth-muscle cells in culture. Biochem J. 1980 Aug 15;190(2):421–429. doi: 10.1042/bj1900421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pryor W. A. Free radical biology: xenobiotics, cancer, and aging. Ann N Y Acad Sci. 1982;393:1–22. doi: 10.1111/j.1749-6632.1982.tb31228.x. [DOI] [PubMed] [Google Scholar]
- Sacks T., Moldow C. F., Craddock P. R., Bowers T. K., Jacob H. S. Oxygen radicals mediate endothelial cell damage by complement-stimulated granulocytes. An in vitro model of immune vascular damage. J Clin Invest. 1978 May;61(5):1161–1167. doi: 10.1172/JCI109031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spector A. A., Kaduce T. L., Hoak J. C., Czervionke R. L. Arachidonic acid availability and prostacyclin production by cultured human endothelial cells. Arteriosclerosis. 1983 Jul-Aug;3(4):323–331. doi: 10.1161/01.atv.3.4.323. [DOI] [PubMed] [Google Scholar]
- Thurman R. G., Ley H. G., Scholz R. Hepatic microsomal ethanol oxidation. Hydrogen peroxide formation and the role of catalase. Eur J Biochem. 1972 Feb;25(3):420–430. doi: 10.1111/j.1432-1033.1972.tb01711.x. [DOI] [PubMed] [Google Scholar]
- Weiss S. J., Young J., LoBuglio A. F., Slivka A., Nimeh N. F. Role of hydrogen peroxide in neutrophil-mediated destruction of cultured endothelial cells. J Clin Invest. 1981 Sep;68(3):714–721. doi: 10.1172/JCI110307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whorton A. R., Sweetman B. J., Oates J. A. Application of high performance liquid chromatography and gas chromatography-mass spectrometry to analysis of prostaglandin E1 in biological media. Anal Biochem. 1979 Oct 1;98(2):455–463. doi: 10.1016/0003-2697(79)90167-2. [DOI] [PubMed] [Google Scholar]
- Whorton A. R., Young S. L., Data J. L., Barchowsky A., Kent R. S. Mechanism of bradykinin-stimulated prostacyclin synthesis in porcine aortic endothelial cells. Biochim Biophys Acta. 1982 Jul 20;712(1):79–87. doi: 10.1016/0005-2760(82)90087-x. [DOI] [PubMed] [Google Scholar]
- Willems C., De Groot P. G., Pool G. A., Gonsalvez M. S., Van Aken W. G., Van Mourik J. A. Arachidonate metabolism in cultured human vascular endothelial cells. Evidence for two prostaglandin synthetic pathways sensitive to acetylsalicylic acid. Biochim Biophys Acta. 1982 Dec 13;713(3):581–588. doi: 10.1016/0005-2760(82)90318-6. [DOI] [PubMed] [Google Scholar]