Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Mar 14;92(6):2061–2065. doi: 10.1073/pnas.92.6.2061

Radial glial cell transformation to astrocytes is bidirectional: regulation by a diffusible factor in embryonic forebrain.

K E Hunter 1, M E Hatten 1
PMCID: PMC42423  PMID: 7892225

Abstract

During development of mammalian cerebral cortex, two classes of glial cells are thought to underlie the establishment of cell patterning. In the embryonic period, migration of young neurons is supported by a system of radial glial cells spanning the thickness of the cortical wall. In the neonatal period, neuronal function is assisted by the physiological support of a second class of astroglial cell, the astrocyte. Here, we show that expression of embryonic radial glial identity requires extrinsic soluble signals present in embryonic forebrain. Moreover, astrocytes reexpress features of radial glia in vitro in the presence of the embryonic cortical signals and in vivo after transplantation into embryonic neocortex. These findings suggest that the transformation of radial glia cells into astrocytes is regulated by availability of inducing signals rather than by changes in cell potential.

Full text

PDF
2062

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson D. J. The neural crest cell lineage problem: neuropoiesis? Neuron. 1989 Jul;3(1):1–12. doi: 10.1016/0896-6273(89)90110-4. [DOI] [PubMed] [Google Scholar]
  2. Angevine J. B., Jr, Sidman R. L. Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature. 1961 Nov 25;192:766–768. doi: 10.1038/192766b0. [DOI] [PubMed] [Google Scholar]
  3. Bronner-Fraser M. Segregation of cell lineage in the neural crest. Curr Opin Genet Dev. 1993 Aug;3(4):641–647. doi: 10.1016/0959-437x(93)90101-t. [DOI] [PubMed] [Google Scholar]
  4. Cameron R. S., Rakic P. Glial cell lineage in the cerebral cortex: a review and synthesis. Glia. 1991;4(2):124–137. doi: 10.1002/glia.440040204. [DOI] [PubMed] [Google Scholar]
  5. Caviness V. S., Jr, Sidman R. L. Time of origin or corresponding cell classes in the cerebral cortex of normal and reeler mutant mice: an autoradiographic analysis. J Comp Neurol. 1973 Mar 15;148(2):141–151. doi: 10.1002/cne.901480202. [DOI] [PubMed] [Google Scholar]
  6. Culican S. M., Baumrind N. L., Yamamoto M., Pearlman A. L. Cortical radial glia: identification in tissue culture and evidence for their transformation to astrocytes. J Neurosci. 1990 Feb;10(2):684–692. doi: 10.1523/JNEUROSCI.10-02-00684.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Emmett C. J., Lawrence J. M., Raisman G., Seeley P. J. Cultured epithelioid astrocytes migrate after transplantation into the adult rat brain. J Comp Neurol. 1991 Sep 15;311(3):330–341. doi: 10.1002/cne.903110304. [DOI] [PubMed] [Google Scholar]
  8. Gao W. Q., Hatten M. E. Neuronal differentiation rescued by implantation of Weaver granule cell precursors into wild-type cerebellar cortex. Science. 1993 Apr 16;260(5106):367–369. doi: 10.1126/science.8469990. [DOI] [PubMed] [Google Scholar]
  9. Goldman J. E., Vaysse P. J. Tracing glial cell lineages in the mammalian forebrain. Glia. 1991;4(2):149–156. doi: 10.1002/glia.440040206. [DOI] [PubMed] [Google Scholar]
  10. Gray G. E., Sanes J. R. Lineage of radial glia in the chicken optic tectum. Development. 1992 Jan;114(1):271–283. doi: 10.1242/dev.114.1.271. [DOI] [PubMed] [Google Scholar]
  11. Green J. B. Roads to neuralness: embryonic neural induction as derepression of a default state. Cell. 1994 May 6;77(3):317–320. doi: 10.1016/0092-8674(94)90145-7. [DOI] [PubMed] [Google Scholar]
  12. Gressens P., Richelme C., Kadhim H. J., Gadisseux J. F., Evrard P. The germinative zone produces the most cortical astrocytes after neuronal migration in the developing mammalian brain. Biol Neonate. 1992;61(1):4–24. doi: 10.1159/000243526. [DOI] [PubMed] [Google Scholar]
  13. Hemmati-Brivanlou A., Melton D. A. Inhibition of activin receptor signaling promotes neuralization in Xenopus. Cell. 1994 Apr 22;77(2):273–281. doi: 10.1016/0092-8674(94)90319-0. [DOI] [PubMed] [Google Scholar]
  14. Hunter K. E., Sporn M. B., Davies A. M. Transforming growth factor-betas inhibit mitogen-stimulated proliferation of astrocytes. Glia. 1993 Mar;7(3):203–211. doi: 10.1002/glia.440070303. [DOI] [PubMed] [Google Scholar]
  15. Jessell T. M., Melton D. A. Diffusible factors in vertebrate embryonic induction. Cell. 1992 Jan 24;68(2):257–270. doi: 10.1016/0092-8674(92)90469-s. [DOI] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Levitt P., Rakic P. Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J Comp Neurol. 1980 Oct 1;193(3):815–840. doi: 10.1002/cne.901930316. [DOI] [PubMed] [Google Scholar]
  18. Lindsay R. M., Raisman G. An autoradiographic study of neuronal development, vascularization and glial cell migration from hippocampal transplants labelled in intermediate explant culture. Neuroscience. 1984 Jun;12(2):513–530. doi: 10.1016/0306-4522(84)90070-8. [DOI] [PubMed] [Google Scholar]
  19. Mission J. P., Takahashi T., Caviness V. S., Jr Ontogeny of radial and other astroglial cells in murine cerebral cortex. Glia. 1991;4(2):138–148. doi: 10.1002/glia.440040205. [DOI] [PubMed] [Google Scholar]
  20. Mudge A. W. Neural development: new ligands for Neu? Curr Biol. 1993 Jun 1;3(6):361–364. doi: 10.1016/0960-9822(93)90201-x. [DOI] [PubMed] [Google Scholar]
  21. Raff M. C. Glial cell diversification in the rat optic nerve. Science. 1989 Mar 17;243(4897):1450–1455. doi: 10.1126/science.2648568. [DOI] [PubMed] [Google Scholar]
  22. Rakic P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol. 1972 May;145(1):61–83. doi: 10.1002/cne.901450105. [DOI] [PubMed] [Google Scholar]
  23. Schmechel D. E., Rakic P. A Golgi study of radial glial cells in developing monkey telencephalon: morphogenesis and transformation into astrocytes. Anat Embryol (Berl) 1979 Jun 5;156(2):115–152. doi: 10.1007/BF00300010. [DOI] [PubMed] [Google Scholar]
  24. Shah N. M., Marchionni M. A., Isaacs I., Stroobant P., Anderson D. J. Glial growth factor restricts mammalian neural crest stem cells to a glial fate. Cell. 1994 May 6;77(3):349–360. doi: 10.1016/0092-8674(94)90150-3. [DOI] [PubMed] [Google Scholar]
  25. Shain W., Forman D. S., Madelian V., Turner J. N. Morphology of astroglial cells is controlled by beta-adrenergic receptors. J Cell Biol. 1987 Nov;105(5):2307–2314. doi: 10.1083/jcb.105.5.2307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Voigt T. Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes. J Comp Neurol. 1989 Nov 1;289(1):74–88. doi: 10.1002/cne.902890106. [DOI] [PubMed] [Google Scholar]
  28. Witte O. N. Steel locus defines new multipotent growth factor. Cell. 1990 Oct 5;63(1):5–6. doi: 10.1016/0092-8674(90)90280-r. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES