Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1985 Nov;76(5):1913–1920. doi: 10.1172/JCI112187

Role of renal sympathetic nerves in mediating hypoperfusion of renal cortical microcirculation in experimental congestive heart failure and acute extracellular fluid volume depletion.

V Kon, A Yared, I Ichikawa
PMCID: PMC424240  PMID: 4056058

Abstract

To evaluate the pathophysiologic importance of renal nerves in regulating the renal vasomotor tone, we measured several parameters of renal cortical microcirculation before and after acute renal denervation (DNx) in the following three groups of anesthetized Munich-Wistar rats: (group 1) congestive heart failure after surgically induced myocardial infarction (n = 10), (group 2) acute extracellular fluid volume depletion after deprivation of drinking water for 48 h (n = 8), and (group 3) sham or nontreated controls (n = 6). In the myocardial-infarcted rats, DNx led to a uniform increase in glomerular plasma flow rate of, on average, 36%. Single nephron glomerular filtration rate of myocardial-infarcted rats also increased despite a reduction in glomerular capillary hydraulic pressure. These changes were associated with a fall in arteriolar resistances, particularly in the efferent arteriole. The glomerular capillary ultrafiltration coefficient rose in all but one myocardial-infarcted animal. A similar hemodynamic pattern was seen after DNx in water-deprived animals. In every water-deprived animal, glomerular plasma flow rate and single nephron GFR increased on average by 28 and 14%, respectively. Again, afferent and efferent arteriolar resistances decreased significantly. Furthermore, the ultrafiltration coefficient increased uniformly and substantially with DNx. To ascertain the potential importance of the interaction between the renal nerves and angiotensin II in these circumstances, we compared the renal cortical hemodynamics in additional groups of water-deprived rats (group 4) after DNx (n = 15), (group 5) during inhibition of angiotensin II with saralasin (n = 15), and (group 6) during treatment with both saralasin and DNx (n = 15). No appreciable difference was detected between group 4 vs. 6. In contrast, substantial differences were noted between group 5 vs. 6: on average, the glomerular plasma flow rate was 26% higher and the afferent and efferent arteriolar resistances 25% and 27% lower, respectively, in group 6. These observations provide direct evidence to indicate pathophysiologic importance of renal nerves in the profound intrarenal circulatory adjustments in prerenal circulatory impairment. The vasoconstrictive effects of renal nerves appear to be mediated in part by their stimulatory influence on angiotensin II release and their direct constrictor actions on pre- and post-glomerular vessels as well.

Full text

PDF
1920

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arendshorst W. J., Finn W. F. Renal hemodynamics in the rat before and during inhibition of angiotensin II. Am J Physiol. 1977 Oct;233(4):F290–F297. doi: 10.1152/ajprenal.1977.233.4.F290. [DOI] [PubMed] [Google Scholar]
  2. Azer M., Gannon R., Kaloyanides G. J. Effect of renal denervation on the antinatriuresis of caval constriction. Am J Physiol. 1972 Mar;222(3):611–616. doi: 10.1152/ajplegacy.1972.222.3.611. [DOI] [PubMed] [Google Scholar]
  3. BARGER A. C., LIEBOWITZ M. R., MULDOWNEY F. P. The role of the kidney in the homeostatic adjustments of congestive heart failure. J Chronic Dis. 1959 May;9(5):571–582. doi: 10.1016/0021-9681(59)90180-8. [DOI] [PubMed] [Google Scholar]
  4. BARGER A. C., MULDOWNEY F. P., LIEBOWITZ M. R. Role of the kidney in the pathogenesis of congestive heart failure. Circulation. 1959 Aug;20(2):273–285. doi: 10.1161/01.cir.20.2.273. [DOI] [PubMed] [Google Scholar]
  5. BLOCK M. A., WAKIM K. G., MANN F. C. Renal function during stimulation of renal nerves. Am J Physiol. 1952 Jun;169(3):670–677. doi: 10.1152/ajplegacy.1952.169.3.670. [DOI] [PubMed] [Google Scholar]
  6. Barajas L. Innervation of the renal cortex. Fed Proc. 1978 Apr;37(5):1192–1201. [PubMed] [Google Scholar]
  7. Barajas L., Powers K., Wang P. Innervation of the renal cortical tubules: a quantitative study. Am J Physiol. 1984 Jul;247(1 Pt 2):F50–F60. doi: 10.1152/ajprenal.1984.247.1.F50. [DOI] [PubMed] [Google Scholar]
  8. Barajas L., Wang P., Powers K., Nishio S. Identification of renal neuroeffector junctions by electron microscopy of reembedded light microscopic autoradiograms of semithin sections. J Ultrastruct Res. 1981 Dec;77(3):379–385. doi: 10.1016/s0022-5320(81)80034-2. [DOI] [PubMed] [Google Scholar]
  9. Bell-Reuss E., Trevino D. L., Gottschalk C. W. Effect of renal sympathetic nerve stimulation on proximal water and sodium reabsorption. J Clin Invest. 1976 Apr;57(4):1104–1107. doi: 10.1172/JCI108355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bello-Reuss E., Colindres R. E., Pastoriza-Muñoz E., Mueller R. A., Gottschalk C. W. Effects of acute unilateral renal denervation in the rat. J Clin Invest. 1975 Jul;56(1):208–217. doi: 10.1172/JCI108069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bello-Reuss E., Pastoriza-Muńoz E., Colindres R. E. Acute unilateral renal denervation in rats with extracellular volume expansion. Am J Physiol. 1977 Jan;232(1):F26–F32. doi: 10.1152/ajprenal.1977.232.1.F26. [DOI] [PubMed] [Google Scholar]
  12. Blantz R. C., Konnen K. S., Tucker B. J. Angiotensin II effects upon the glomerular microcirculation and ultrafiltration coefficient of the rat. J Clin Invest. 1976 Feb;57(2):419–434. doi: 10.1172/JCI108293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Colindres R. E., Spielman W. S., Moss N. G., Harrington W. W., Gottschalk C. W. Functional evidence for renorenal reflexes in the rat. Am J Physiol. 1980 Sep;239(3):F265–F270. doi: 10.1152/ajprenal.1980.239.3.F265. [DOI] [PubMed] [Google Scholar]
  14. Davis H. A., Horton E. W. Output of prostaglandins from the rabbit kidney, its increase on renal nerve stimulation and its inhibition by indomethacin. Br J Pharmacol. 1972 Dec;46(4):658–675. doi: 10.1111/j.1476-5381.1972.tb06891.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Davis J. O., Freeman R. H. Mechanisms regulating renin release. Physiol Rev. 1976 Jan;56(1):1–56. doi: 10.1152/physrev.1976.56.1.1. [DOI] [PubMed] [Google Scholar]
  16. Deen W. M., Troy J. L., Robertson C. R., Brenner B. M. Dynamics of glomerular ultrafiltration in the rat. IV. Determination of the ultrafiltration coefficient. J Clin Invest. 1973 Jun;52(6):1500–1508. doi: 10.1172/JCI107324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. DiBona G. F., Rios L. L. Renal nerves in compensatory renal response to contralateral renal denervation. Am J Physiol. 1980 Jan;238(1):F26–F30. doi: 10.1152/ajprenal.1980.238.1.F26. [DOI] [PubMed] [Google Scholar]
  18. DiBona G. F., Sawin L. L. Renal nerve activity in conscious rats during volume expansion and depletion. Am J Physiol. 1985 Jan;248(1 Pt 2):F15–F23. doi: 10.1152/ajprenal.1985.248.1.F15. [DOI] [PubMed] [Google Scholar]
  19. DiBona G. F., Sawin L. L. Renal nerves in renal adaptation to dietary sodium restriction. Am J Physiol. 1983 Sep;245(3):F322–F328. doi: 10.1152/ajprenal.1983.245.3.F322. [DOI] [PubMed] [Google Scholar]
  20. DiSalvo J., Fell C. Changes in renal blood flow during renal nerve stimulation. Proc Soc Exp Biol Med. 1971 Jan;136(1):150–153. doi: 10.3181/00379727-136-35215. [DOI] [PubMed] [Google Scholar]
  21. Dieterich H. J. Electron microscopic studies of the innervation of the rat kidney. Z Anat Entwicklungsgesch. 1974;145(2):169–186. doi: 10.1007/BF00519727. [DOI] [PubMed] [Google Scholar]
  22. FUHR J., KACZMARCZYK J., KRUTTGEN C. D. Eine einfache colorimetrische Methode zur Inulinbestimmung für Nieren-Clearance-Untersuchungen bei Stoffwechselgesunden und Diabetikern. Klin Wochenschr. 1955 Aug 1;33(29-30):729–730. doi: 10.1007/BF01473295. [DOI] [PubMed] [Google Scholar]
  23. GAFFNEY T. E., BRAUNWALD E. Importance of the adrenergic nervous system in the support of circulatory function in patients with congestive heart failure. Am J Med. 1963 Mar;34:320–324. doi: 10.1016/0002-9343(63)90118-9. [DOI] [PubMed] [Google Scholar]
  24. Gill J. R., Jr, Carr A. A., Fleischmann L. E., Casper A. G., Bartter F. C. Effects of pentolinium on sodium excretion in dogs with constriction of the vena cava. Am J Physiol. 1967 Jan;212(1):191–196. doi: 10.1152/ajplegacy.1967.212.1.191. [DOI] [PubMed] [Google Scholar]
  25. Gregory L. C., Reid I. A. Effect of renal denervation on the suppression of renin secretion by vasopressin in conscious dogs. Am J Physiol. 1984 Dec;247(6 Pt 2):F881–F887. doi: 10.1152/ajprenal.1984.247.6.F881. [DOI] [PubMed] [Google Scholar]
  26. Hermansson K., Larson M., Källskog O., Wolgast M. Influence of renal nerve activity on arteriolar resistance, ultrafiltration dynamics and fluid reabsorption. Pflugers Arch. 1981 Jan;389(2):85–90. doi: 10.1007/BF00582096. [DOI] [PubMed] [Google Scholar]
  27. Ichikawa I., Ferrone R. A., Duchin K. L., Manning M., Dzau V. J., Brenner B. M. Relative contribution of vasopressin and angiotensin II to the altered renal microcirculatory dynamics in two-kidney Goldblatt hypertension. Circ Res. 1983 Nov;53(5):592–602. doi: 10.1161/01.res.53.5.592. [DOI] [PubMed] [Google Scholar]
  28. Ichikawa I., Pfeffer J. M., Pfeffer M. A., Hostetter T. H., Brenner B. M. Role of angiotensin II in the altered renal function of congestive heart failure. Circ Res. 1984 Nov;55(5):669–675. doi: 10.1161/01.res.55.5.669. [DOI] [PubMed] [Google Scholar]
  29. Johns E. J., Lewis B. A., Singer B. The sodium-retaining effect of renal nerve activity in the cat: role of angiotensin formation. Clin Sci Mol Med. 1976 Jul;51(1):93–102. doi: 10.1042/cs0510093. [DOI] [PubMed] [Google Scholar]
  30. Kon V., Ichikawa I. Effector loci for renal nerve control of cortical microcirculation. Am J Physiol. 1983 Nov;245(5 Pt 1):F545–F553. doi: 10.1152/ajprenal.1983.245.5.F545. [DOI] [PubMed] [Google Scholar]
  31. Myers B. D., Deen W. M., Brenner B. M. Effects of norepinephrine and angiotensin II on the determinants of glomerular ultrafiltration and proximal tubule fluid reabsorption in the rat. Circ Res. 1975 Jul;37(1):101–110. doi: 10.1161/01.res.37.1.101. [DOI] [PubMed] [Google Scholar]
  32. Needleman P., Marshall G. R., Johnson E. M., Jr Determinants and modification of adrenergic and vascular resistance in the kidney. Am J Physiol. 1974 Sep;227(3):665–669. doi: 10.1152/ajplegacy.1974.227.3.665. [DOI] [PubMed] [Google Scholar]
  33. Pelayo J. C., Ziegler M. G., Blantz R. C. Angiotensin II in adrenergic-induced alterations in glomerular hemodynamics. Am J Physiol. 1984 Nov;247(5 Pt 2):F799–F807. doi: 10.1152/ajprenal.1984.247.5.F799. [DOI] [PubMed] [Google Scholar]
  34. Pelayo J. C., Ziegler M. G., Jose P. A., Blantz R. C. Renal denervation in the rat: analysis of glomerular and proximal tubular function. Am J Physiol. 1983 Jan;244(1):F70–F77. doi: 10.1152/ajprenal.1983.244.1.F70. [DOI] [PubMed] [Google Scholar]
  35. Pfeffer M. A., Pfeffer J. M., Fishbein M. C., Fletcher P. J., Spadaro J., Kloner R. A., Braunwald E. Myocardial infarct size and ventricular function in rats. Circ Res. 1979 Apr;44(4):503–512. doi: 10.1161/01.res.44.4.503. [DOI] [PubMed] [Google Scholar]
  36. Schrier R. W., Humphreys M. H., Ufferman R. C. Role of cardiac output and the autonomic nervous system in the antinatriuretic response to acute constriction of the thoracic superior vena cava. Circ Res. 1971 Nov;29(5):490–498. doi: 10.1161/01.res.29.5.490. [DOI] [PubMed] [Google Scholar]
  37. Slick G. L., Aguilera A. J., Zambraski E. J., DiBona G. F., Kaloyanides G. J. Renal neuroadrenergic transmission. Am J Physiol. 1975 Jul;229(1):60–65. doi: 10.1152/ajplegacy.1975.229.1.60. [DOI] [PubMed] [Google Scholar]
  38. Slick G. L., DiBona G. F., Kaloyanides G. J. Renal sympathetic nerve activity in sodium retention of acute caval constriction. Am J Physiol. 1974 Apr;226(4):925–932. doi: 10.1152/ajplegacy.1974.226.4.925. [DOI] [PubMed] [Google Scholar]
  39. Steiner R. W., Tucker B. J., Blantz R. C. Glomerular hemodynamics in rats with chronic sodium depletion. Effect of saralasin. J Clin Invest. 1979 Aug;64(2):503–512. doi: 10.1172/JCI109488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Stella A., Calaresu F., Zanchetti A. Neural factors contributing to renin release during reduction in renal perfusion pressure and blood flow in cats. Clin Sci Mol Med. 1976 Nov;51(5):453–461. doi: 10.1042/cs0510453. [DOI] [PubMed] [Google Scholar]
  41. Viets J. W., Deen W. M., Troy J. L., Brenner B. M. Determination of serum protein concentration in nanoliter blood samples using fluorescamine or 9-phthalaldehyde. Anal Biochem. 1978 Aug 1;88(2):513–521. doi: 10.1016/0003-2697(78)90451-7. [DOI] [PubMed] [Google Scholar]
  42. Yared A., Kon V., Ichikawa I. Mechanism of preservation of glomerular perfusion and filtration during acute extracellular fluid volume depletion. Importance of intrarenal vasopressin-prostaglandin interaction for protecting kidneys from constrictor action of vasopressin. J Clin Invest. 1985 May;75(5):1477–1487. doi: 10.1172/JCI111851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Zambraski E. J., DiBona G. F. Angiotensin II in antinatriuresis of low-level renal nerve stimulation. Am J Physiol. 1976 Oct;231(4):1105–1110. doi: 10.1152/ajplegacy.1976.231.4.1105. [DOI] [PubMed] [Google Scholar]
  44. Zimmerman B. G., Gisslen J. Pattern of renal vasoconstriction and transmitter release during sympathetic stimulation in presence of angiotensin and cocaine. J Pharmacol Exp Ther. 1968 Oct;163(2):320–329. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES