Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1987 May;79(5):1343–1348. doi: 10.1172/JCI112960

Mechanisms underlying the differential effects of ethanol on the bioavailability of riboflavin and flavin adenine dinucleotide.

J Pinto, Y P Huang, R S Rivlin
PMCID: PMC424383  PMID: 3033022

Abstract

Chronic alcoholism is associated with a high prevalence of riboflavin deficiency. Experiments were designed in an animal model to determine whether ethanol alters selectively the absorption of riboflavin and flavin adenine dinucleotide (FAD), the predominant dietary form of the vitamin. Rats received by gavage a liver homogenate to which either [14C]riboflavin or [14C]FAD was added with either ethanol or isocaloric sucrose solutions. Ethanol markedly diminished the bioavailability of [14C]FAD to a greater degree than that of [14C]riboflavin. Corroboration of an ethanol-impaired intraluminal hydrolysis of FAD was provided by using everted jejunal segments and measuring mucosal uptake of [14C]riboflavin together with nonradiolabeled FAD. In subsequent studies with mucosal cell extracts, ethanol markedly inhibited activities of FAD pyrophosphatase and flavin mononucleotide (FMN) phosphatase. These findings suggest that dietary sources of riboflavin (FMN and FAD) are not absorbed as well in the presence of ethanol than are vitamin preparations containing riboflavin, which is utilized more readily.

Full text

PDF
1345

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akiyama T., Selhub J., Rosenberg I. H. FMN phosphatase and FAD pyrophosphatase in rat intestinal brush borders: role in intestinal absorption of dietary riboflavin. J Nutr. 1982 Feb;112(2):263–268. doi: 10.1093/jn/112.2.263. [DOI] [PubMed] [Google Scholar]
  2. Anderson B. B., Saary M., Stephens A. D., Perry G. M., Lersundi I. C., Horn J. E. Effect of riboflavin on red-cell metabolism of vitamin B6. Nature. 1976 Dec 9;264(5586):574–575. doi: 10.1038/264574a0. [DOI] [PubMed] [Google Scholar]
  3. BRODIE B. B., GILLETTE J. R., LA DU B. N. Enzymatic metabolism of drugs and other foreign compounds. Annu Rev Biochem. 1958;27(3):427–454. doi: 10.1146/annurev.bi.27.070158.002235. [DOI] [PubMed] [Google Scholar]
  4. Baines M. Detection and incidence of B and C vitamin deficiency in alcohol-related illness. Ann Clin Biochem. 1978 Nov;15(6):307–312. doi: 10.1177/000456327801500173. [DOI] [PubMed] [Google Scholar]
  5. Baker H., Frank O., Zetterman R. K., Rajan K. S., ten Hove W., Leevy C. M. Inability of chronic alcoholics with liver disease to use food as a source of folates, thiamin and vitamin B6. Am J Clin Nutr. 1975 Dec;28(12):1377–1380. doi: 10.1093/ajcn/28.12.1377. [DOI] [PubMed] [Google Scholar]
  6. Bamji M. S. Glutathione reductase activity in red blood cells and riboflavin nutritional status in humans. Clin Chim Acta. 1969 Nov;26(2):263–269. doi: 10.1016/0009-8981(69)90376-3. [DOI] [PubMed] [Google Scholar]
  7. Beutler E. Glutathione reductase: stimulation in normal subjects by riboflavin supplementation. Science. 1969 Aug 8;165(3893):613–615. doi: 10.1126/science.165.3893.613. [DOI] [PubMed] [Google Scholar]
  8. Bonjour J. P. Vitamins and alcoholism. V. Riboflavin, VI. Niacin, VII. Pantothenic acid, and VIII. Biotin. Int J Vitam Nutr Res. 1980;50(4):425–440. [PubMed] [Google Scholar]
  9. Brin M., Bauernfeind J. C. Vitamin needs of the elderly. Postgrad Med. 1978 Mar;63(3):155-9, 162-3. doi: 10.1080/00325481.1978.11714786. [DOI] [PubMed] [Google Scholar]
  10. Conney A. H. Pharmacological implications of microsomal enzyme induction. Pharmacol Rev. 1967 Sep;19(3):317–366. [PubMed] [Google Scholar]
  11. Dastur D. K., Santhadevi N., Quadros E. V., Avari F. C., Wadia N. H., Desai M. N., Bharucha E. P. The B-vitamins in malnutrition with alcoholism. A model of intervitamin relationships. Br J Nutr. 1976 Sep;36(2):143–159. doi: 10.1079/bjn19760068. [DOI] [PubMed] [Google Scholar]
  12. FENNELLY J., FRANK O., BAKER H., LEEVY C. M. PERIPHERAL NEUROPATHY OF THE ALCOHOLIC: I, AETIOLOGICAL ROLE OF ANEURIN AND OTHER B-COMPLEX VITAMINS. Br Med J. 1964 Nov 21;2(5420):1290–1292. doi: 10.1136/bmj.2.5420.1290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fazekas A. G., Pinto J., Huang Y. P., Chaudhuri R., Rivlin R. S. Age dependence of thyroxine stimulation of riboflavin incorporation into flavin coenzymes in liver and brain. Endocrinology. 1978 Feb;102(2):641–648. doi: 10.1210/endo-102-2-641. [DOI] [PubMed] [Google Scholar]
  14. Fazekas A. G., Sandor T. Flavin nucleotide coenzyme biosynthesis and its relation to corticosteroidogenesis in the rat adrenal. Endocrinology. 1971 Aug;89(2):397–407. doi: 10.1210/endo-89-2-397. [DOI] [PubMed] [Google Scholar]
  15. Fowler N. O., McCall D., Chou T. C., Holmes J. C., Hanenson I. B. Electrocardiographic changes and cardiac arrhythmias in patients receiving psychotropic drugs. Am J Cardiol. 1976 Feb;37(2):223–230. doi: 10.1016/0002-9149(76)90316-7. [DOI] [PubMed] [Google Scholar]
  16. French S. W. Effect of chronic ethanol ingestion on liver enzyme changes induced by thiamine, riboflavin, pyridoxine, or choline deficiency. J Nutr. 1966 Mar;88(3):291–302. doi: 10.1093/jn/88.3.291. [DOI] [PubMed] [Google Scholar]
  17. Hamajima S., Ono S., Hirano H., Obara K. Induction of the FAD synthetase system in rat liver by phenobarbital administration. Int J Vitam Nutr Res. 1979;49(1):59–63. [PubMed] [Google Scholar]
  18. Hell D., Six P. Thiamin-, Riboflavin- und Pyridoxin-Versorgung bei chronischem Alkoholismus. Dtsch Med Wochenschr. 1977 Jul 1;102(26):962–966. doi: 10.1055/s-0028-1104998. [DOI] [PubMed] [Google Scholar]
  19. Hietanen E., Koivusaari U., Laitinen M., Norling A. Hepatic drug metabolism during ethanol ingestion in riboflavin deficient rats. Toxicology. 1980;16(2):103–111. doi: 10.1016/0300-483x(80)90041-4. [DOI] [PubMed] [Google Scholar]
  20. Kumar M., Axelrod A. E. Cellular antibody synthesis in thiamin, riboflavin, biotin and folic acid-deficient rats. Proc Soc Exp Biol Med. 1978 Mar;157(3):421–423. doi: 10.3181/00379727-157-40068. [DOI] [PubMed] [Google Scholar]
  21. LEEVY C. M., BAKER H., TENHOVE W., FRANK O., CHERRICK G. R. B-COMPLEX VITAMINS IN LIVER DISEASE OF THE ALCOHOLIC. Am J Clin Nutr. 1965 Apr;16:339–346. doi: 10.1093/ajcn/16.4.339. [DOI] [PubMed] [Google Scholar]
  22. Majumdar S. K., Shaw G. K., Thomson A. D. Vitamin utilization status in chronic alcoholics. Int J Vitam Nutr Res. 1981;51(1):54–58. [PubMed] [Google Scholar]
  23. Mezey E. Metabolic effects of alcohol. Fed Proc. 1985 Jan;44(1 Pt 1):134–138. [PubMed] [Google Scholar]
  24. Neville J. N., Eagles J. A., Samson G., Olson R. E. Nutritional status of alcoholics. Am J Clin Nutr. 1968 Nov;21(11):1329–1340. doi: 10.1093/ajcn/21.11.1329. [DOI] [PubMed] [Google Scholar]
  25. Olpin S. E., Bates C. J. Lipid metabolism in riboflavin-deficient rats. 1. Effect of dietary lipids on riboflavin status and fatty acid profiles. Br J Nutr. 1982 May;47(3):577–596. doi: 10.1079/bjn19820069. [DOI] [PubMed] [Google Scholar]
  26. Patel J. M., Pawar S. S. Riboflavin and drug metabolism in adult male and female rats. Biochem Pharmacol. 1974 May 15;23(10):1467–1477. doi: 10.1016/0006-2952(74)90384-0. [DOI] [PubMed] [Google Scholar]
  27. Pearson A. G., Turner A. J. Folate-dependent 1-carbon transfer to biogenic amines mediated by methylenetetrahydrofolate reductase. Nature. 1975 Nov 13;258(5531):173–174. doi: 10.1038/258173a0. [DOI] [PubMed] [Google Scholar]
  28. Pekkanen L., Rusi M. The effects of dietary niacin and riboflavin on voluntary intake and metabolism of ethanol in rats. Pharmacol Biochem Behav. 1979 Nov;11(5):575–579. doi: 10.1016/0091-3057(79)90044-3. [DOI] [PubMed] [Google Scholar]
  29. Pelliccione N. J., Karmali R., Rivlin R. S., Pinto J. Effects of riboflavin deficiency upon prostaglandin biosynthesis in rat kidney. Prostaglandins Leukot Med. 1985 Mar;17(3):349–358. doi: 10.1016/0262-1746(85)90126-x. [DOI] [PubMed] [Google Scholar]
  30. Pelliccione N., Pinto J., Huang Y. P., Rivlin R. S. Accelerated development of riboflavin deficiency by treatment with chlorpromazine. Biochem Pharmacol. 1983 Oct 1;32(19):2949–2953. doi: 10.1016/0006-2952(83)90401-x. [DOI] [PubMed] [Google Scholar]
  31. Pinto J., Huang Y. P., Pelliccione N., Rivlin R. S. Cardiac sensitivity to the inhibitory effects of chlorpromazine, imipramine and amitriptyline upon formation of flavins. Biochem Pharmacol. 1982 Nov 1;31(21):3495–3499. doi: 10.1016/0006-2952(82)90632-3. [DOI] [PubMed] [Google Scholar]
  32. Pinto J., Huang Y. P., Rivlin R. S. Inhibition of riboflavin metabolism in rat tissues by chlorpromazine, imipramine, and amitriptyline. J Clin Invest. 1981 May;67(5):1500–1506. doi: 10.1172/JCI110180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pinto J., Wolinsky M., Rivlin R. S. Chlorpromazine antagonism of thyroxine-induced flavin formation. Biochem Pharmacol. 1979 Mar 1;28(5):597–600. doi: 10.1016/0006-2952(79)90141-2. [DOI] [PubMed] [Google Scholar]
  34. Pitchumoni C. S., Sonnenshein M., Candido F. M., Panchacharam P., Cooperman J. M. Nutrition in the pathogenesis of alcoholic pancreatitis. Am J Clin Nutr. 1980 Mar;33(3):631–636. doi: 10.1093/ajcn/33.3.631. [DOI] [PubMed] [Google Scholar]
  35. Preusch P. C., Suttie J. W. Vitamin K-dependent reactions in rat liver: role of flavoproteins. J Nutr. 1981 Dec;111(12):2087–2097. doi: 10.1093/jn/111.12.2087. [DOI] [PubMed] [Google Scholar]
  36. Rasmussen K. M., Barsa P. M., McCormick D. B., Roe D. A. Effect of strain, sex and dietary riboflavin on pyridoxamine (pyridoxine) 5'-phosphate oxidase activity in rat tissues. J Nutr. 1980 Oct;110(10):1940–1946. doi: 10.1093/jn/110.10.1940. [DOI] [PubMed] [Google Scholar]
  37. Rivlin R. S., Menendez C., Langdon R. G. Biochemical similarities between hypothyroidism and riboflavin deficiency. Endocrinology. 1968 Sep;83(3):461–469. doi: 10.1210/endo-83-3-461. [DOI] [PubMed] [Google Scholar]
  38. Rivlin R. S. Riboflavin metabolism. N Engl J Med. 1970 Aug 27;283(9):463–472. doi: 10.1056/NEJM197008272830906. [DOI] [PubMed] [Google Scholar]
  39. Rosenthal W. S., Adham N. F., Lopez R., Cooperman J. M. Riboflavin deficiency in complicated chronic alcoholism. Am J Clin Nutr. 1973 Aug;26(8):858–860. doi: 10.1093/ajcn/26.8.858. [DOI] [PubMed] [Google Scholar]
  40. Satanovskaya V. I., Ostrovsky YuM, Sadovnik M. N. The liver alcohol - and aldehyde dehydrogenases of rats with chronic alcohol intoxication after riboflavin administration. Subst Alcohol Actions Misuse. 1981;2(3):149–152. [PubMed] [Google Scholar]
  41. Stanko R. T., Mendelow H., Shinozuka H., Adibi S. A. Prevention of alcohol-induced fatty liver by natural metabolites and riboflavin. J Lab Clin Med. 1978 Feb;91(2):228–235. [PubMed] [Google Scholar]
  42. Sterner R. T., Price W. R. Restricted riboflavin: within-subject behavioral effects in humans. Am J Clin Nutr. 1973 Feb;26(2):150–160. doi: 10.1093/ajcn/26.2.150. [DOI] [PubMed] [Google Scholar]
  43. Taniguchi M., Nakamura M. Effects of riboflavin deficiency on the lipids of rat liver. J Nutr Sci Vitaminol (Tokyo) 1976;22(2):135–146. doi: 10.3177/jnsv.22.135. [DOI] [PubMed] [Google Scholar]
  44. Tillotson J. A., Sauberlich H. E. Effect of riboflavin depletion and repletion on the erythrocyte glutathione reductase in the rat. J Nutr. 1971 Nov;101(11):1459–1466. doi: 10.1093/jn/101.11.1459. [DOI] [PubMed] [Google Scholar]
  45. Wickramasinghe R. H. Adrenodoxin reductase, the flavoprotein component of adrenal mitochondrial steroid hydroxylases. II. Functional aspects. Int J Pept Protein Res. 1974;6(3):195–201. doi: 10.1111/j.1399-3011.1974.tb02379.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES