Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1984 Jul;74(1):236–248. doi: 10.1172/JCI111407

Proteins of the cystic fibrosis respiratory tract. Fragmented immunoglobulin G opsonic antibody causing defective opsonophagocytosis.

R B Fick Jr, G P Naegel, S U Squier, R E Wood, J B Gee, H Y Reynolds
PMCID: PMC425206  PMID: 6429195

Abstract

In the disease cystic fibrosis (CF), pulmonary infection with Pseudomonas aeruginosa is a common clinical complication that determines most morbidity and almost all excess mortality. We postulated that in this disease a defect in Pseudomonas-reactive IgG antibodies may contribute to chronic Pseudomonas infections. Bronchoalveolar lavages were performed upon 13 patients with CF, 7 patients with chronic bronchitis characterized by recurrent Pseudomonas infections, and 4 normal volunteers. The levels of various proteins important to host defenses and proteases were determined; enzyme inhibition studies were performed. CF respiratory immunoglobulin levels were significantly elevated when compared with both normals and patients with chronic bronchitis (P less than 0.05). Albumin and transferrin levels were decreased in the CF lung fluids. CF elastolytic activity was strikingly elevated (means = 6.02 micrograms/mg total protein) and the inhibitory profile suggested such activity resembled a serine-proteinase. Alpha-1-antitrypsin antigenic levels were not altered in CF respiratory fluids. There was a tendency for the lavage IgG to fall as elastase levels rose (r = -0.29). IgG opsonins for two Pseudomonas immunotypes were isolated with affinity chromatography for functional and immunochemical studies. Bacterial phagocytic rates in the presence of these Pseudomonas-reactive IgG opsonins derived from CF lavage fluid were depressed (0.3% uptake/unit time) when compared with similarly titered positive controls (uptake = 1.3%/unit time, P less than 0.001). Additionally, normal pulmonary macrophage intracellular killing of Pseudomonas was severely altered in the presence of opsonins derived from CF respiratory fluids. At some time points, less than 30% of the bacteria were killed. CF IgG opsonins contain a cleavage fragment (100,000 D, 5S sedimentation coefficient) with antigenic determinants similar to the Fab portion of IgG. The presence of such a fragment was inversely correlated with phagocytic functional activity. Intact IgG comprised as little as 18% of the CF lavage fluid specimens. Aliquots of intact human IgG, when mixed with the CF opsonins, augmented Pseudomonas uptake and improved intracellular killing. Conversely, peptide fragments of IgG opsonins, which are proteolytically derived in vitro, duplicated in our system the defect observed with opsonins derived from CF lung fluids; bacterial uptake was inversely related to the concentration of F(ab')2 and to a greater degree, to Fc present in the opsonic mixture. We concluded that IgG respiratory opsonins are fragmented, inhibiting phagocytosis and serving a permissive role in the chronic Pseudomonas pulmonary infection in the disease CF.

Full text

PDF
238

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramson N., Gelfand E. W., Jandl J. H., Rosen F. S. The interaction between human monocytes and red cells. Specificity for IgG subclasses and IgG fragments. J Exp Med. 1970 Dec 1;132(6):1207–1215. doi: 10.1084/jem.132.6.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baugh R. J., Travis J. Human leukocyte granule elastase: rapid isolation and characterization. Biochemistry. 1976 Feb 24;15(4):836–841. doi: 10.1021/bi00649a017. [DOI] [PubMed] [Google Scholar]
  3. Bielefeld D. R., Senior R. M., Yu S. Y. A new method for determination of elastolytic activity using (14C) labeled elastin and its application to leukocytic elastase. Biochem Biophys Res Commun. 1975 Dec 15;67(4):1553–1559. doi: 10.1016/0006-291x(75)90203-x. [DOI] [PubMed] [Google Scholar]
  4. Bieth J., Wermuth C. G. The action of elastase on p-nitroanilide substrates. Biochem Biophys Res Commun. 1973 Jul 17;53(2):383–390. doi: 10.1016/0006-291x(73)90673-6. [DOI] [PubMed] [Google Scholar]
  5. Biggar W. D., Holmes B., Good R. A. Opsonic defect in patients with cystic fibrosis of the pancreas. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1716–1719. doi: 10.1073/pnas.68.8.1716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bjornson A. B., Michael J. G. Contribution of humoral and cellular factors to the resistance to experimental infection by Pseudomonas aeruginosa in mice. I. Interaction between immunoglobulins, heat-labile serum factors, and phagocytic cells in the killing of bacteria. Infect Immun. 1971 Oct;4(4):462–467. doi: 10.1128/iai.4.4.462-467.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Boxerbaum B., Kagumba A., Matthews L. W. Selective inhibition of phagocytic activity of rabbit alveolar macrophages by cystic fibrosis serum. Am Rev Respir Dis. 1973 Oct;108(4):777–783. doi: 10.1164/arrd.1973.108.4.777. [DOI] [PubMed] [Google Scholar]
  8. Fick R. B., Jr, Naegel G. P., Matthay R. A., Reynolds H. Y. Cystic fibrosis pseudomonas opsonins. Inhibitory nature in an in vitro phagocytic assay. J Clin Invest. 1981 Oct;68(4):899–914. doi: 10.1172/JCI110345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fick R. B., Jr, Naegel G. P., Reynolds H. Y. Use of Pseudomonas aeruginosa lipopolysaccharide immunoadsorbents to prepare high potency, mono-specific antibodies. J Immunol Methods. 1980;38(1-2):103–116. doi: 10.1016/0022-1759(80)90335-x. [DOI] [PubMed] [Google Scholar]
  10. Fick R. B., Reynolds H. Y. Pseudomonas respiratory infection in cystic fibrosis: a possible defect in opsonic IgG antibody? Bull Eur Physiopathol Respir. 1983 Mar-Apr;19(2):151–161. [PubMed] [Google Scholar]
  11. Fraker P. J., Speck J. C., Jr Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun. 1978 Feb 28;80(4):849–857. doi: 10.1016/0006-291x(78)91322-0. [DOI] [PubMed] [Google Scholar]
  12. Gadek J. E., Fells G. A., Zimmerman R. L., Rennard S. I., Crystal R. G. Antielastases of the human alveolar structures. Implications for the protease-antiprotease theory of emphysema. J Clin Invest. 1981 Oct;68(4):889–898. doi: 10.1172/JCI110344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Goding J. W. Use of staphylococcal protein A as an immunological reagent. J Immunol Methods. 1978;20:241–253. doi: 10.1016/0022-1759(78)90259-4. [DOI] [PubMed] [Google Scholar]
  14. Guttman R. M., Waisbren B. A. Bacterial blocking activity of specific IgG in chronic Pseudomonas aeruginosa infection. Clin Exp Immunol. 1975 Jan;19(1):121–130. [PMC free article] [PubMed] [Google Scholar]
  15. Higerd T. B., Virella G., Cardenas R., Koistinen J., Fett J. W. New method for obtaining IgA-specific protease. J Immunol Methods. 1977;18(3-4):245–249. doi: 10.1016/0022-1759(77)90178-8. [DOI] [PubMed] [Google Scholar]
  16. Hinman L. M., Stevens C. A., Matthay R. A., Gee J. B. Elastase and lysozyme activities in human alveolar macrophages. Effects of cigarette smoking. Am Rev Respir Dis. 1980 Feb;121(2):263–271. doi: 10.1164/arrd.1980.121.2.263. [DOI] [PubMed] [Google Scholar]
  17. Holby N., Olling S. Pseudomonas aeruginosa infection in cystic fibrosis. Bactericidal effect of serum from normal individuals and patients with cystic fibrosis on P. aeruginosa strains from patients with cystic fibrosis or other diseases. Acta Pathol Microbiol Scand C. 1977 Apr;85(2):107–114. [PubMed] [Google Scholar]
  18. Kilian M., Mestecky J., Kulhavy R., Tomana M., Butler W. T. IgA1 proteases from Haemophilus influenzae, Streptococcus pneumoniae, Neisseria meningitidis, and Streptococcus sanguis: comparative immunochemical studies. J Immunol. 1980 Jun;124(6):2596–2600. [PubMed] [Google Scholar]
  19. Kuhn C., 3rd, Senior R. M. The role of elastases in the development of emphysema. Lung. 1978;155(3):185–197. [PubMed] [Google Scholar]
  20. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Low R. B., Davis G. S., Giancola M. S. Biochemical analyses of bronchoalveolar lavage fluids of healthy human volunteer smokers and nonsmokers. Am Rev Respir Dis. 1978 Nov;118(5):863–875. doi: 10.1164/arrd.1978.118.5.863. [DOI] [PubMed] [Google Scholar]
  23. MANDL I., KELLER S., COHEN B. Microbial elastases. A comparative study. Proc Soc Exp Biol Med. 1962 Apr;109:923–925. doi: 10.3181/00379727-109-27379. [DOI] [PubMed] [Google Scholar]
  24. Martinez-Tello F. J., Braun D. G., Blanc W. A. Immunoglobulin production in bronchial mucosa and bronchial lymph nodes, particularly in cystic fibrosis of the pancreas. J Immunol. 1968 Nov;101(5):989–1003. [PubMed] [Google Scholar]
  25. Matthews W. J., Jr, Williams M., Oliphint B., Geha R., Colten H. R. Hypogammaglobulinemia in patients with cystic fibrosis. N Engl J Med. 1980 Jan 31;302(5):245–249. doi: 10.1056/NEJM198001313020501. [DOI] [PubMed] [Google Scholar]
  26. Merrill W. W., Naegel G. P., Matthay R. A., Reynolds H. Y. Alveolar macrophage-derived chemotactic factor: kinetics of in vitro production and partial characterization. J Clin Invest. 1980 Feb;65(2):268–276. doi: 10.1172/JCI109668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Moskowitz R. W., Heinrich G. Bacterial inactivation of human serum alpha-1 antitrypsin. J Lab Clin Med. 1971 May;77(5):777–785. [PubMed] [Google Scholar]
  28. Murphey S. A., Root R. K., Schreiber A. D. The role of antibody and complement in phagocytosis by rabbit alveolar macrophages. J Infect Dis. 1979 Dec;140(6):896–903. doi: 10.1093/infdis/140.6.896. [DOI] [PubMed] [Google Scholar]
  29. NISONOFF A., MARKUS G., WISSLER F. C. Separation of univalent fragments of rabbit antibody by reduction of a single, labile disulphide bond. Nature. 1961 Jan 28;189:293–295. doi: 10.1038/189293a0. [DOI] [PubMed] [Google Scholar]
  30. PORTER R. R. The hydrolysis of rabbit y-globulin and antibodies with crystalline papain. Biochem J. 1959 Sep;73:119–126. doi: 10.1042/bj0730119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pennington J. E., Reynolds H. Y., Wood R. E., Robinson R. A., Levine A. S. Use of a Pseudomonas Aeruginosa vaccine in pateints with acute leukemia and cystic fibrosis. Am J Med. 1975 May;58(5):629–636. doi: 10.1016/0002-9343(75)90498-2. [DOI] [PubMed] [Google Scholar]
  32. Quie P. G., Messner R. P., Williams R. C., Jr Phagocytosis in subacute bacterial endocarditis. Localization of the primary opsonic site to Fc fragment. J Exp Med. 1968 Oct 1;128(4):553–570. doi: 10.1084/jem.128.4.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Reynolds H. Y., Atkinson J. P., Newball H. H., Frank M. M. Receptors for immunoglobulin and complement on human alveolar macrophages. J Immunol. 1975 Jun;114(6):1813–1819. [PubMed] [Google Scholar]
  34. Reynolds H. Y., Johnson J. S. Structural units of canine serum and secretory immunoglobulin A. Biochemistry. 1971 Jul 20;10(15):2821–2827. doi: 10.1021/bi00791a003. [DOI] [PubMed] [Google Scholar]
  35. Reynolds H. Y., Kazmierowski J. A., Newball H. H. Specificity of opsonic antibodies to enhance phagocytosis of Pseudomonas aeruginosa by human alveolar macrophages. J Clin Invest. 1975 Aug;56(2):376–385. doi: 10.1172/JCI108102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Reynolds H. Y., Newball H. H. Analysis of proteins and respiratory cells obtained from human lungs by bronchial lavage. J Lab Clin Med. 1974 Oct;84(4):559–573. [PubMed] [Google Scholar]
  37. Reynolds H. Y., Thompson R. E. Pulmonary host defenses. II. Interaction of respiratory antibodies with Pseudomonas aeruginosa and alveolar macrophages. J Immunol. 1973 Aug;111(2):369–380. [PubMed] [Google Scholar]
  38. Reynolds H. Y., Thompson R. E. Pulmonary host defenses. II. Interaction of respiratory antibodies with Pseudomonas aeruginosa and alveolar macrophages. J Immunol. 1973 Aug;111(2):369–380. [PubMed] [Google Scholar]
  39. Stephens R. E. High-resolution preparative SDS-polyacrylamide gel electrophoresis: fluorescent visualization and electrophoretic elution-concentration of protein bands. Anal Biochem. 1975 May 12;65(1-2):369–379. doi: 10.1016/0003-2697(75)90521-7. [DOI] [PubMed] [Google Scholar]
  40. Thomassen M. J., Demko C. A., Wood R. E., Tandler B., Dearborn D. G., Boxerbaum B., Kuchenbrod P. J. Ultrastructure and function of alveolar macrophages from cystic fibrosis patients. Pediatr Res. 1980 May;14(5):715–721. doi: 10.1203/00006450-198005000-00003. [DOI] [PubMed] [Google Scholar]
  41. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. WIEME R. J. An improved technique of agar-gel electrophoresis on microscope slides. Clin Chim Acta. 1959 May;4(3):317–321. doi: 10.1016/0009-8981(59)90096-8. [DOI] [PubMed] [Google Scholar]
  43. Wallwork J. C., McFarlane H. The SIgA system and hypersensitivity in patients with cystic fibrosis. Clin Allergy. 1976 Jul;6(4):349–358. doi: 10.1111/j.1365-2222.1976.tb01915.x. [DOI] [PubMed] [Google Scholar]
  44. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  45. Wood R. E., Boat T. F., Doershuk C. F. Cystic fibrosis. Am Rev Respir Dis. 1976 Jun;113(6):833–878. doi: 10.1164/arrd.1976.113.6.833. [DOI] [PubMed] [Google Scholar]
  46. Young L. S., Armstrong D. Human immunity to Pseudomonas aeruginosa. I. In-vitro interaction of bacteria, polymorphonuclear leukocytes, and serum factors. J Infect Dis. 1972 Sep;126(3):257–276. doi: 10.1093/infdis/126.3.257. [DOI] [PubMed] [Google Scholar]
  47. Zebrak J., Herman T., Werys R., Pryjma J., Gaweł J. Proteins in bronchial secretion of children with chronic pulmonary diseases. II. Relation to bronchoscopic and bronchographic examination. Scand J Respir Dis. 1979 Apr;60(2):69–75. [PubMed] [Google Scholar]
  48. Zierdt C. H., Williams R. L. Serotyping of Pseudomonas aeruginosa isolates from patients with cystic fibrosis of the pancreas. J Clin Microbiol. 1975 Jun;1(6):521–526. doi: 10.1128/jcm.1.6.521-526.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES