Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1984 Sep;74(3):834–842. doi: 10.1172/JCI111500

Calcium transport in the rabbit superficial proximal convoluted tubule.

R C Ng, D Rouse, W N Suki
PMCID: PMC425238  PMID: 6236233

Abstract

Calcium transport was studied in isolated S2 segments of rabbit superficial proximal convoluted tubules. 45Ca was added to the perfusate for measurement of lumen-to-bath flux (JlbCa), to the bath for bath-to-lumen flux (JblCa), and to both perfusate and bath for net flux (JnetCa). In these studies, the perfusate consisted of an equilibrium solution that was designed to minimize water flux or electrochemical potential differences (PD). Under these conditions, JlbCa (9.1 +/- 1.0 peq/mm X min) was not different from JblCa (7.3 +/- 1.3 peq/mm X min), and JnetCa was not different from zero, which suggests that calcium transport in the superficial proximal convoluted tubule is due primarily to passive transport. The efflux coefficient was 9.5 +/- 1.2 X 10(-5) cm/s, which was not significantly different from the influx coefficient, 7.0 +/- 1.3 X 10(-5) cm/s. When the PD was made positive or negative with use of different perfusates, net calcium absorption or secretion was demonstrated, respectively, which supports a major role for passive transport. These results indicate that in the superficial proximal convoluted tubule of the rabbit, passive driving forces are the major determinants of calcium transport.

Full text

PDF
837

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agus Z. S., Gardner L. B., Beck L. H., Goldberg M. Effects of parathyroid hormone on renal tubular reabsorption of calcium, sodium, and phosphate. Am J Physiol. 1973 May;224(5):1143–1148. doi: 10.1152/ajplegacy.1973.224.5.1143. [DOI] [PubMed] [Google Scholar]
  2. Beck L. H., Goldberg M. Effects of acetazolamide and parathyroidectomy on renal transport of sodium, calcium, and phosphate. Am J Physiol. 1973 May;224(5):1136–1142. doi: 10.1152/ajplegacy.1973.224.5.1136. [DOI] [PubMed] [Google Scholar]
  3. Berry C. A., Rector F. C., Jr Relative sodium-to-chloride permeability in the proximal convoluted tubule. Am J Physiol. 1978 Dec;235(6):F592–F604. doi: 10.1152/ajprenal.1978.235.6.F592. [DOI] [PubMed] [Google Scholar]
  4. Biagi B. A., Giebisch G. Temperature dependence of transepithelial potential in isolated perfused rabbit proximal tubules. Am J Physiol. 1979 Mar;236(3):F302–F310. doi: 10.1152/ajprenal.1979.236.3.F302. [DOI] [PubMed] [Google Scholar]
  5. Blaustein M. P. The interrelationship between sodium and calcium fluxes across cell membranes. Rev Physiol Biochem Pharmacol. 1974;70:33–82. doi: 10.1007/BFb0034293. [DOI] [PubMed] [Google Scholar]
  6. Bourdeau J. E., Burg M. B. Effect of PTH on calcium transport across the cortical thick ascending limb of Henle's loop. Am J Physiol. 1980 Aug;239(2):F121–F126. doi: 10.1152/ajprenal.1980.239.2.F121. [DOI] [PubMed] [Google Scholar]
  7. Bourdeau J. E., Burg M. B. Voltage dependence of calcium transport in the thick ascending limb of Henle's loop. Am J Physiol. 1979 Apr;236(4):F357–F364. doi: 10.1152/ajprenal.1979.236.4.F357. [DOI] [PubMed] [Google Scholar]
  8. Burg M. B., Green N. Role of monovalent ions in the reabsorption of fluid by isolated perfused proximal renal tubules of the rabbit. Kidney Int. 1976 Sep;10(3):221–228. doi: 10.1038/ki.1976.101. [DOI] [PubMed] [Google Scholar]
  9. Burg M. B. Perfusion of isolated renal tubules. Yale J Biol Med. 1972 Jun-Aug;45(3-4):321–326. [PMC free article] [PubMed] [Google Scholar]
  10. Burg M., Grantham J., Abramow M., Orloff J. Preparation and study of fragments of single rabbit nephrons. Am J Physiol. 1966 Jun;210(6):1293–1298. doi: 10.1152/ajplegacy.1966.210.6.1293. [DOI] [PubMed] [Google Scholar]
  11. Burg M., Patlak C., Green N., Villey D. Organic solutes in fluid absorption by renal proximal convoluted tubules. Am J Physiol. 1976 Aug;231(2):627–637. doi: 10.1152/ajplegacy.1976.231.2.627. [DOI] [PubMed] [Google Scholar]
  12. Chonko A. M., Osgood R. W., Nickel A. E., Ferris T. F., Stein J. H. The measurement of nephron filtration rate and absolute reabsorption in the proximal tubule of the rabbit kidney. J Clin Invest. 1975 Jul;56(1):232–235. doi: 10.1172/JCI108073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Costanzo L. S., Windhager E. E. Calcium and sodium transport by the distal convoluted tubule of the rat. Am J Physiol. 1978 Nov;235(5):F492–F506. doi: 10.1152/ajprenal.1978.235.5.F492. [DOI] [PubMed] [Google Scholar]
  14. DeFronzo R. A., Goldberg M., Agus Z. S. The effects of glucose and insulin on renal electrolyte transport. J Clin Invest. 1976 Jul;58(1):83–90. doi: 10.1172/JCI108463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Doucet A., Katz A. I. High-affinity Ca-Mg-ATPase along the rabbit nephron. Am J Physiol. 1982 Apr;242(4):F346–F352. doi: 10.1152/ajprenal.1982.242.4.F346. [DOI] [PubMed] [Google Scholar]
  16. Duarte C. G., Watson J. F. Calcium reabsorption in proximal tubule of the dog nephron. Am J Physiol. 1967 Jun;212(6):1355–1360. doi: 10.1152/ajplegacy.1967.212.6.1355. [DOI] [PubMed] [Google Scholar]
  17. Friedman P. A., Figueiredo J. F., Maack T., Windhager E. E. Sodium-calcium interactions in the renal proximal convoluted tubule of the rabbit. Am J Physiol. 1981 Jun;240(6):F558–F568. doi: 10.1152/ajprenal.1981.240.6.F558. [DOI] [PubMed] [Google Scholar]
  18. Frömter E., Gessner K. Free-flow potential profile along rat kidney proximal tubule. Pflugers Arch. 1974;351(1):69–83. doi: 10.1007/BF00603512. [DOI] [PubMed] [Google Scholar]
  19. Gmaj P., Murer H., Kinne R. Calcium ion transport across plasma membranes isolated from rat kidney cortex. Biochem J. 1979 Mar 15;178(3):549–557. doi: 10.1042/bj1780549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gonda A., Wong N., Seely J. F., Dirks J. H. The role of hemodynamic factors on urinary calcium and magnesium excretion. Can J Physiol Pharmacol. 1969 Jul;47(7):619–626. doi: 10.1139/y69-108. [DOI] [PubMed] [Google Scholar]
  21. Imai M., Kokko J. P. Effect of peritubular protein concentration on reabsorption of sodium and water in isolated perfused proxmal tubules. J Clin Invest. 1972 Feb;51(2):314–325. doi: 10.1172/JCI106816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Imai M., Kokko J. P. Sodium chloride, urea, and water transport in the thin ascending limb of Henle. Generation of osmotic gradients by passive diffusion of solutes. J Clin Invest. 1974 Feb;53(2):393–402. doi: 10.1172/JCI107572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jacobson H. R. Characteristics of volume reabsorption in rabbit superficial and juxtamedullary proximal convoluted tubules. J Clin Invest. 1979 Mar;63(3):410–418. doi: 10.1172/JCI109317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jacobson H. R. Functional segmentation of the mammalian nephron. Am J Physiol. 1981 Sep;241(3):F203–F218. doi: 10.1152/ajprenal.1981.241.3.F203. [DOI] [PubMed] [Google Scholar]
  25. Jacobson H. R., Kokko J. P. Intrinsic differences in various segments of the proximal convoluted tubule. J Clin Invest. 1976 Apr;57(4):818–825. doi: 10.1172/JCI108357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Katz A. I. Renal Na-K-ATPase: its role in tubular sodium and potassium transport. Am J Physiol. 1982 Mar;242(3):F207–F219. doi: 10.1152/ajprenal.1982.242.3.F207. [DOI] [PubMed] [Google Scholar]
  27. Kokko J. P. Proximal tubule potential difference. Dependence on glucose on glucose, HCO 3 , and amino acids. J Clin Invest. 1973 Jun;52(6):1362–1367. doi: 10.1172/JCI107308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Laprade R., Cardinal J. Liquid junctions and isolated proximal tubule transepithelial potentials. Am J Physiol. 1983 Mar;244(3):F304–F319. doi: 10.1152/ajprenal.1983.244.3.F304. [DOI] [PubMed] [Google Scholar]
  29. Le Grimellec C. Micropuncture study along the proximal convoluted tubule. Electrolyte reabsorption in first convolutions. Pflugers Arch. 1975;354(2):133–150. doi: 10.1007/BF00579944. [DOI] [PubMed] [Google Scholar]
  30. Morel F. Sites of hormone action in the mammalian nephron. Am J Physiol. 1981 Mar;240(3):F159–F164. doi: 10.1152/ajprenal.1981.240.3.F159. [DOI] [PubMed] [Google Scholar]
  31. Murayama Y., Morel F., Le Grimellec C. Phosphate, calcium and magnesium transfers in proximal tubules and loops of Henle, as measured by single nephron microperfusion experiments in the rat. Pflugers Arch. 1972;333(1):1–16. doi: 10.1007/BF00586037. [DOI] [PubMed] [Google Scholar]
  32. Rouse D., Ng R. C., Suki W. N. Calcium transport in the pars recta and thin descending limb of Henle of the rabbit, perfused in vitro. J Clin Invest. 1980 Jan;65(1):37–42. doi: 10.1172/JCI109657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schafer J. A., Troutman S. L., Andreoli T. E. Volume reabsorption, transepithelial potential differences, and ionic permeability properties in mammalian superficial proximal straight tubules. J Gen Physiol. 1974 Nov;64(5):582–607. doi: 10.1085/jgp.64.5.582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Shareghi G. R., Agus Z. S. Magnesium transport in the cortical thick ascending limb of Henle's loop of the rabbit. J Clin Invest. 1982 Apr;69(4):759–769. doi: 10.1172/JCI110514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Suki W. N., Rouse D. Hormonal regulation of calcium transport in thick ascending limb renal tubules. Am J Physiol. 1981 Aug;241(2):F171–F174. doi: 10.1152/ajprenal.1981.241.2.F171. [DOI] [PubMed] [Google Scholar]
  36. Suki W. N., Rouse D., Ng R. C., Kokko J. P. Calcium transport in the thick ascending limb of Henle. Heterogeneity of function in the medullary and cortical segments. J Clin Invest. 1980 Nov;66(5):1004–1009. doi: 10.1172/JCI109928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Suki W. N., Schwettmann R. S., Rector F. C., Jr, Seldin D. W. Effect of chronic mineralocorticoid administration on calcium excretion in the rat. Am J Physiol. 1968 Jul;215(1):71–74. doi: 10.1152/ajplegacy.1968.215.1.71. [DOI] [PubMed] [Google Scholar]
  38. Sutton R. A., Dirks J. H. The renal excretion of calcium: a review of micropuncture data. Can J Physiol Pharmacol. 1975 Dec;53(6):979–988. doi: 10.1139/y75-136. [DOI] [PubMed] [Google Scholar]
  39. Taylor A., Windhager E. E. Possible role of cytosolic calcium and Na-Ca exchange in regulation of transepithelial sodium transport. Am J Physiol. 1979 Jun;236(6):F505–F512. doi: 10.1152/ajprenal.1979.236.6.F505. [DOI] [PubMed] [Google Scholar]
  40. Ullrich K. J., Rumrich G., Klöss S. Active Ca2+ reabsorption in the proximal tubule of the rat kidney. Dependence on sodium- and buffer transport. Pflugers Arch. 1976 Aug 24;364(3):223–228. doi: 10.1007/BF00581759. [DOI] [PubMed] [Google Scholar]
  41. WALSER M. Calcium clearance as a function of sodium clearance in the dog. Am J Physiol. 1961 May;200:1099–1104. doi: 10.1152/ajplegacy.1961.200.5.1099. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES