Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1984 Sep;74(3):956–965. doi: 10.1172/JCI111515

Pulmonary response of fifth component of complement-sufficient and -deficient mice to hyperoxia.

D A Parrish, B C Mitchell, P M Henson, G L Larsen
PMCID: PMC425253  PMID: 6470147

Abstract

The fifth component of complement, C5, can form fragments that cause neutrophil chemotaxis, oxygen radical production, and lysosomal enzyme release. The purpose of this study was to determine if C5 and these fragments contribute to the inflammation seen in pulmonary oxygen toxicity as defined by histology and analysis of bronchoalveolar lavage fluid (BALF). In addition, the role of C5 in producing mortality in the animals was addressed. Pairs of C5 deficient (C5-) and C5 sufficient (C5+) mice, 6 mo or older, were placed in a chamber and challenged with 95% oxygen at ambient pressure. A significant difference in mortality was observed after 200 h of exposure, i.e., 90% mortality in C5+ mice vs. 25% mortality in C5- mice (P less than 0.001). This difference in mortality was not seen when C5- mice were transfused with plasma that contained C5 derived from C5+ mice. Morphometric analysis of histologic sections with light microscopy revealed earlier pathologic changes in C5+ mice that was characterized by increased cellularity due in part to neutrophil influx into the alveolar-capillary wall. Transmission electron microscopy also confirmed an earlier inflammatory response in the C5+ mice with evidence of injury to alveolar epithelial cells, interstitial edema, and an increase in the cellular component of the interstitium. Analysis of BALF also demonstrated earlier abnormalities in C5+ mice, which included a significantly greater percentage of neutrophils in the C5+ mice at 117 h. Similar studies in younger mice of these strains again showed earlier neutrophil accumulation in C5+ mice, but the time course of the injury was more protracted. This study shows that the presence of C5 is associated with a greater mortality and an earlier influx of neutrophils into murine lungs. However, in the absence of C5, neutrophils will still immigrate into the lung and hyperoxic damage will occur at a later time point, which demonstrates the inherent redundancy of the inflammatory process.

Full text

PDF
958

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Autor A. P., Frank L., Roberts R. J. Developmental characteristics of pulmonary superoxide dismutase: relationship to idiopathic respiratory distress syndrome. Pediatr Res. 1976 Mar;10(3):154–158. doi: 10.1203/00006450-197603000-00002. [DOI] [PubMed] [Google Scholar]
  2. Berend N., Wright J. L., Thurlbeck W. M., Marlin G. E., Woolcock A. J. Small airways disease: reproducibility of measurements and correlation with lung function. Chest. 1981 Mar;79(3):263–268. doi: 10.1378/chest.79.3.263. [DOI] [PubMed] [Google Scholar]
  3. Bonikos D. S., Bensch K. G., Ludwin S. K., Northway W. H., Jr Oxygen toxicity in the newborn. The effect of prolonged 100 per cent O2 exposure on the lungs of newborn mice. Lab Invest. 1975 May;32(5):619–635. [PubMed] [Google Scholar]
  4. Bonta V. W., Gawron E. R., Warshaw J. B. Neonatal red cell superoxide dismutase enzyme levels: possible role as a cellular defense mechanism against pulmonary oxygen toxicity. Pediatr Res. 1977 Jun;11(6):754–757. doi: 10.1203/00006450-197706000-00012. [DOI] [PubMed] [Google Scholar]
  5. Cochrane C. G., Müller-Eberhard H. J., Aikin B. S. Depletion of plasma complement in vivo by a protein of cobra venom: its effect on various immunologic reactions. J Immunol. 1970 Jul;105(1):55–69. [PubMed] [Google Scholar]
  6. Crapo J. D., Barry B. E., Foscue H. A., Shelburne J. Structural and biochemical changes in rat lungs occurring during exposures to lethal and adaptive doses of oxygen. Am Rev Respir Dis. 1980 Jul;122(1):123–143. doi: 10.1164/arrd.1980.122.1.123. [DOI] [PubMed] [Google Scholar]
  7. Desai U., Kreutzer D. L., Showell H., Arroyave C. V., Ward P. A. Acute inflammatory pulmonary reactions induced by chemotactic factors. Am J Pathol. 1979 Jul;96(1):71–83. [PMC free article] [PubMed] [Google Scholar]
  8. Dreisin R. B., Schwarz M. I., Theofilopoulos A. N., Stanford R. E. Circulating immune complexes in the idiopathic interstitial pneumonias. N Engl J Med. 1978 Feb 16;298(7):353–357. doi: 10.1056/NEJM197802162980701. [DOI] [PubMed] [Google Scholar]
  9. Ehrenkranz R. A., Ablow R. C., Warshaw J. B. The complication of oxygen use in the newborn infant. Clin Perinatol. 1978 Sep;5(2):437–450. [PubMed] [Google Scholar]
  10. Ford-Hutchinson A. W., Bray M. A., Doig M. V., Shipley M. E., Smith M. J. Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature. 1980 Jul 17;286(5770):264–265. doi: 10.1038/286264a0. [DOI] [PubMed] [Google Scholar]
  11. Fox R. B., Hoidal J. R., Brown D. M., Repine J. E. Pulmonary inflammation due to oxygen toxicity: involvement of chemotactic factors and polymorphonuclear leukocytes. Am Rev Respir Dis. 1981 May;123(5):521–523. doi: 10.1164/arrd.1981.123.5.521. [DOI] [PubMed] [Google Scholar]
  12. Frank L., Autor A. P., Roberts R. J. Oxygen therapy and hyaline membrane disease: the effect of hyperoxia on pulmonary superoxide dismutase activity and the mediating role of plasma or serum. J Pediatr. 1977 Jan;90(1):105–110. doi: 10.1016/s0022-3476(77)80781-6. [DOI] [PubMed] [Google Scholar]
  13. Frank L., Bucher J. R., Roberts R. J. Oxygen toxicity in neonatal and adult animals of various species. J Appl Physiol Respir Environ Exerc Physiol. 1978 Nov;45(5):699–704. doi: 10.1152/jappl.1978.45.5.699. [DOI] [PubMed] [Google Scholar]
  14. Giclas P. C., Pinckard R. N., Olson M. S. In vitro activation of complement by isolated human heart subcellular membranes. J Immunol. 1979 Jan;122(1):146–151. [PubMed] [Google Scholar]
  15. Goldstein I. M., Roos D., Kaplan H. B., Weissmann G. Complement and immunoglobulins stimulate superoxide production by human leukocytes independently of phagocytosis. J Clin Invest. 1975 Nov;56(5):1155–1163. doi: 10.1172/JCI108191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Henson P. M., Larsen G. L., Webster R. O., Mitchell B. C., Goins A. J., Henson J. E. Pulmonary microvascular alterations and injury induced by complement fragments: synergistic effect of complement activation, neutrophil sequestration, and prostaglandins. Ann N Y Acad Sci. 1982;384:287–300. doi: 10.1111/j.1749-6632.1982.tb21379.x. [DOI] [PubMed] [Google Scholar]
  17. Henson P. M., McCarthy K., Larsen G. L., Webster R. O., Giclas P. C., Dreisin R. B., King T. E., Shaw J. O. Complement fragments, alveolar macrophages, and alveolitis. Am J Pathol. 1979 Oct;97(1):93–110. [PMC free article] [PubMed] [Google Scholar]
  18. Hunninghake G. W., Gallin J. I., Fauci A. S. Immunologic reactivity of the lung: the in vivo and in vitro generation of a neutrophil chemotactic factor by alveolar macrophages. Am Rev Respir Dis. 1978 Jan;117(1):15–23. doi: 10.1164/arrd.1978.117.1.15. [DOI] [PubMed] [Google Scholar]
  19. Johnson K. J., Ward P. A. Acute immunologic pulmonary alveolitis. J Clin Invest. 1974 Aug;54(2):349–357. doi: 10.1172/JCI107770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kolb W. P., Kolb L. M., Wetsel R. A., Rogers W. R., Shaw J. O. Quantitation and stability of the fifth component of complement (C5) in bronchoalveolar lavage fluids obtained from non-human primates. Am Rev Respir Dis. 1981 Feb;123(2):226–231. doi: 10.1164/arrd.1981.123.2.226. [DOI] [PubMed] [Google Scholar]
  21. Larsen G. L., McCarthy K., Webster R. O., Henson J., Henson P. M. A differential effect of C5a and C5a des Arg in the induction of pulmonary inflammation. Am J Pathol. 1980 Jul;100(1):179–192. [PMC free article] [PubMed] [Google Scholar]
  22. Larsen G. L., Mitchell B. C., Harper T. B., Henson P. M. The pulmonary response of C5 sufficient and deficient mice to Pseudomonas aeruginosa. Am Rev Respir Dis. 1982 Aug;126(2):306–311. doi: 10.1164/arrd.1982.126.2.306. [DOI] [PubMed] [Google Scholar]
  23. Larsen G. L., Mitchell B. C., Henson P. M. The pulmonary response of C5 sufficient and deficient mice to immune complexes. Am Rev Respir Dis. 1981 Apr;123(4 Pt 1):434–439. doi: 10.1164/arrd.1981.123.4.434. [DOI] [PubMed] [Google Scholar]
  24. McCarthy K., Henson P. M. Induction of lysosomal enzyme secretion by alveolar macrophages in response to the purified complement fragments C5a and C5a des-arg. J Immunol. 1979 Dec;123(6):2511–2517. [PubMed] [Google Scholar]
  25. Nilsson U. R., Müller-Eberhard H. J. Deficiency of the fifth component of complement in mice with an inherited complement defect. J Exp Med. 1967 Jan 1;125(1):1–16. doi: 10.1084/jem.125.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pratt P. C. Pathology of pulmonary oxygen toxicity. Am Rev Respir Dis. 1974 Dec;110(6 Pt 2):51–57. doi: 10.1164/arrd.1974.110.6P2.51. [DOI] [PubMed] [Google Scholar]
  27. Robertson J., Caldwell J. R., Castle J. R., Waldman R. H. Evidence for the presence of components of the alternative (properdin) pathway of complement activation in respiratory secretions. J Immunol. 1976 Sep;117(3):900–903. [PubMed] [Google Scholar]
  28. Scherzer H., Ward P. A. Lung and dermal vascular injury produced by preformed immune complexes. Am Rev Respir Dis. 1978 Mar;117(3):551–557. doi: 10.1164/arrd.1978.117.3.551. [DOI] [PubMed] [Google Scholar]
  29. Shasby D. M., Fox R. B., Harada R. N., Repine J. E. Reduction of the edema of acute hyperoxic lung injury by granulocyte depletion. J Appl Physiol Respir Environ Exerc Physiol. 1982 May;52(5):1237–1244. doi: 10.1152/jappl.1982.52.5.1237. [DOI] [PubMed] [Google Scholar]
  30. Snyderman R., Shin H., Dannenberg A. M., Jr Macrophage proteinase and inflammation: the production of chemotactic activity from the fifth complement by macrophage proteinase. J Immunol. 1972 Oct;109(4):896–898. [PubMed] [Google Scholar]
  31. Suttorp N., Simon L. M. Lung cell oxidant injury. Enhancement of polymorphonuclear leukocyte-mediated cytotoxicity in lung cells exposed to sustained in vitro hyperoxia. J Clin Invest. 1982 Aug;70(2):342–350. doi: 10.1172/JCI110623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Valone F. H., Franklin M., Sun F. F., Goetzl E. J. Alveolar macrophage lipoxygenase products of arachidonic acid: isolation and recognition as the predominant constituents of the neutrophil chemotactic activity elaborated by alveolar macrophages. Cell Immunol. 1980 Sep 1;54(2):390–401. doi: 10.1016/0008-8749(80)90219-1. [DOI] [PubMed] [Google Scholar]
  33. Ward P. A., Hill J. H. C5 chemotactic fragments produced by an enzyme in lysosomal granules of neutrophils. J Immunol. 1970 Mar;104(3):535–543. [PubMed] [Google Scholar]
  34. Webster R. O., Hong S. R., Johnston R. B., Jr, Henson P. M. Biologial effects of the human complement fragments C5a and C5ades Arg on neutrophil function. Immunopharmacology. 1980 Jun;2(3):201–219. doi: 10.1016/0162-3109(80)90050-8. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES