Abstract
We have used spin-labeled analogues of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine to compare the transverse diffusion rates of lipids in normal and sickle erythrocytes. The beta-chain of the spin-labeled lipids was a short chain (five carbons) providing the spin labels with a relative water solubility, and hence permitting their rapid incorporation into cell membranes. The orientation of the labeled lipids in the membranes was assayed by selective chemical reduction of the nitroxide labels embedded in the outer leaflet. We have found that all three spin-labeled phospholipids are initially incorporated in the outer leaflet. Upon incubation at 4 degrees C the aminophospholipids, not the phosphatidylcholine, diffuse toward the inner leaflet within 3 h. The transverse diffusion rate of aminophospholipids is reduced by 41% (phosphatidylserine) and 14% (phosphatidylethanolamine) in homozygote sickle cells (SS) when compared with normal cells (AA) or heterozygote cells (AS or SC). At equilibrium the asymmetric distribution of spin-labeled phospholipids resulting from this selective diffusion is also reduced in SS cells when compared with AA, SC, or AS cells. This reduced asymmetry was not found in a reticulocyte-rich blood sample (hemoglobin A), indicating that the age of the cell cannot be responsible for this phenomenon. Moreover, because at low temperatures the sickling process does not occur, the observed perturbations in phospholipid organization reflect preexisting membrane abnormalities in sickle cells. Ghosts loaded with ATP give the same results. Varying the concentration of intracellular calcium had no effect on lipid diffusion, except at very high free calcium concentrations (3 microM) when diffusion was practically abolished. We suggest that membrane protein alterations may be part of the explanation of the observed abnormalities.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ballas S. K., Burka E. R. Failure to demonstrate red cell membrane protein abnormalities in sickle cell anaemia. Br J Haematol. 1980 Dec;46(4):627–629. doi: 10.1111/j.1365-2141.1980.tb06022.x. [DOI] [PubMed] [Google Scholar]
- Basset P., Beuzard Y., Garel M. C., Rosa J. Isoelectric focusing of human hemoglobin: its application to screening, to the characterization of 70 variants, and to the study of modified fractions of normal hemoglobins. Blood. 1978 May;51(5):971–982. [PubMed] [Google Scholar]
- Bergmann W. L., Dressler V., Haest C. W., Deuticke B. Reorientation rates and asymmetry of distribution of lysophospholipids between the inner and outer leaflet of the erythrocyte membrane. Biochim Biophys Acta. 1984 May 30;772(3):328–336. doi: 10.1016/0005-2736(84)90150-0. [DOI] [PubMed] [Google Scholar]
- Chiu D., Lubin B. Abnormal vitamin E and glutathione peroxidase levels in sickle cell anemia: evidence for increased susceptibility to lipid peroxidation in vivo. J Lab Clin Med. 1979 Oct;94(4):542–548. [PubMed] [Google Scholar]
- Chiu D., Lubin B., Shohet S. B. Erythrocyte membrane lipid reorganization during the sickling process. Br J Haematol. 1979 Feb;41(2):223–234. doi: 10.1111/j.1365-2141.1979.tb05851.x. [DOI] [PubMed] [Google Scholar]
- Craescu C. T., Cassoly R., Galacteros F., Prehu C. Decrease of transport of some polyols in sickle cells. Biochim Biophys Acta. 1984 Sep 5;775(3):291–296. doi: 10.1016/0005-2736(84)90183-4. [DOI] [PubMed] [Google Scholar]
- Durham A. C. A survey of readily available chelators for buffering calcium ion concentrations in physiological solutions. Cell Calcium. 1983 Feb;4(1):33–46. doi: 10.1016/0143-4160(83)90047-7. [DOI] [PubMed] [Google Scholar]
- Dzandu J. K., Johnson R. M. Membrane protein phosphorylation in intact normal and sickle cell erythrocytes. J Biol Chem. 1980 Jul 10;255(13):6382–6386. [PubMed] [Google Scholar]
- Evans E. A. Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests. Biophys J. 1983 Jul;43(1):27–30. doi: 10.1016/S0006-3495(83)84319-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans E., Mohandas N., Leung A. Static and dynamic rigidities of normal and sickle erythrocytes. Major influence of cell hemoglobin concentration. J Clin Invest. 1984 Feb;73(2):477–488. doi: 10.1172/JCI111234. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franck P. F., Chiu D. T., Op den Kamp J. A., Lubin B., van Deenen L. L., Roelofsen B. Accelerated transbilayer movement of phosphatidylcholine in sickled erythrocytes. A reversible process. J Biol Chem. 1983 Jul 10;258(13):8436–8442. [PubMed] [Google Scholar]
- Hebbel R. P., Eaton J. W., Balasingam M., Steinberg M. H. Spontaneous oxygen radical generation by sickle erythrocytes. J Clin Invest. 1982 Dec;70(6):1253–1259. doi: 10.1172/JCI110724. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lew V. L., Tsien R. Y., Miner C., Bookchin R. M. Physiological [Ca2+]i level and pump-leak turnover in intact red cells measured using an incorporated Ca chelator. Nature. 1982 Jul 29;298(5873):478–481. doi: 10.1038/298478a0. [DOI] [PubMed] [Google Scholar]
- Lubin B., Chiu D., Bastacky J., Roelofsen B., Van Deenen L. L. Abnormalities in membrane phospholipid organization in sickled erythrocytes. J Clin Invest. 1981 Jun;67(6):1643–1649. doi: 10.1172/JCI110200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lux S. E., John K. M., Karnovsky M. J. Irreversible deformation of the spectrin-actin lattice in irreversibly sickled cells. J Clin Invest. 1976 Oct;58(4):955–963. doi: 10.1172/JCI108549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murphy J. R. Influence of temperature and method of centrifugation on the separation of erythrocytes. J Lab Clin Med. 1973 Aug;82(2):334–341. [PubMed] [Google Scholar]
- Nash G. B., Johnson C. S., Meiselman H. J. Mechanical properties of oxygenated red blood cells in sickle cell (HbSS) disease. Blood. 1984 Jan;63(1):73–82. [PubMed] [Google Scholar]
- Orringer E. P. A further characterization of the selective K movements observed in human red blood cells following acetylphenylhydrazine exposure. Am J Hematol. 1984 May;16(4):355–366. doi: 10.1002/ajh.2830160406. [DOI] [PubMed] [Google Scholar]
- Palek J. Membrane protein and organization in normal and hemoglobinopathic red cells. Tex Rep Biol Med. 1980;40:397–416. [PubMed] [Google Scholar]
- Palek J., Thomae M., Ozog D. Red cell calcium content and transmembrane calcium movements in sickle cell anemia. J Lab Clin Med. 1977 Jun;89(6):1365–1374. [PubMed] [Google Scholar]
- Rachmilewitz E. A., Kahane I. The red blood cell membrane in thalassaemia. Br J Haematol. 1980 Sep;46(1):1–6. doi: 10.1111/j.1365-2141.1980.tb05928.x. [DOI] [PubMed] [Google Scholar]
- Raval P. J., Allan D. Sickling of sickle erythrocytes does not alter phospholipid asymmetry. Biochem J. 1984 Oct 15;223(2):555–557. doi: 10.1042/bj2230555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rice-Evans C., Bruckdorfer K. R., Dootson G. Studies on the altered membrane characteristics of sickle cells. FEBS Lett. 1978 Oct 1;94(1):81–86. doi: 10.1016/0014-5793(78)80911-9. [DOI] [PubMed] [Google Scholar]
- Rubin R. W., Milikowski C., Wise G. E. Organizational differences in the membrane proteins of normal and irreversibly sickled erythrocytes. Biochim Biophys Acta. 1980;595(1):1–8. doi: 10.1016/0005-2736(80)90241-2. [DOI] [PubMed] [Google Scholar]
- Sasaki J., Waterman M. R., Buchanan G. R., Cottam G. L. Plasma and erythrocyte lipids in sickle cell anaemia. Clin Lab Haematol. 1983;5(1):35–44. doi: 10.1111/j.1365-2257.1983.tb00494.x. [DOI] [PubMed] [Google Scholar]
- Schwartz R. S., Düzgünes N., Chiu D. T., Lubin B. Interaction of phosphatidylserine-phosphatidylcholine liposomes with sickle erythrocytes. Evidence for altered membrane surface properties. J Clin Invest. 1983 Jun;71(6):1570–1580. doi: 10.1172/JCI110913. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwoch G., Passow H. Preparation and properties of human erythrocyte ghosts. Mol Cell Biochem. 1973 Dec 15;2(2):197–218. doi: 10.1007/BF01795474. [DOI] [PubMed] [Google Scholar]
- Seigneuret M., Devaux P. F. ATP-dependent asymmetric distribution of spin-labeled phospholipids in the erythrocyte membrane: relation to shape changes. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3751–3755. doi: 10.1073/pnas.81.12.3751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seigneuret M., Zachowski A., Hermann A., Devaux P. F. Asymmetric lipid fluidity in human erythrocyte membrane: new spin-label evidence. Biochemistry. 1984 Sep 11;23(19):4271–4275. doi: 10.1021/bi00314a002. [DOI] [PubMed] [Google Scholar]
- Sheetz M. P., Singer S. J. On the mechanism of ATP-induced shape changes in human erythrocyte membranes. I. The role of the spectrin complex. J Cell Biol. 1977 Jun;73(3):638–646. doi: 10.1083/jcb.73.3.638. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Westerman M. P., Diloy-Puray M., Streczyn M. Membrane components in the red cells of patients with sickle cell anemia. Relationship to cell aging and to irreversibility of sickling. Biochim Biophys Acta. 1979 Oct 19;557(1):149–155. doi: 10.1016/0005-2736(79)90097-x. [DOI] [PubMed] [Google Scholar]
