Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1985 Jun;75(6):1813–1820. doi: 10.1172/JCI111894

Race and sex differences in erythrocyte Na+, K+, and Na+-K+-adenosine triphosphatase.

N Lasker, L Hopp, S Grossman, R Bamforth, A Aviv
PMCID: PMC425536  PMID: 2989333

Abstract

Several reports indicate that erythrocytes (RBCs) from blacks and men have higher sodium concentrations than those from whites and women. One possible mechanism to explain this finding is a difference in the activity of Na+-K+-ATPase. To explore this possibility, we have studied the Na+ and K+ kinetics of RBC Na+-K+-ATPase and RBC Na+ and K+ concentrations in 37 normotensive blacks and whites, both males and females. The maximal initial reaction velocity (Vmax) values for RBC Na+-K+-ATPase were lower in blacks and men as compared with whites and women. Higher RBC Na+ levels were observed in blacks and males vs. whites and females. Significant inverse correlations were noted between the Na+-K+-ATPase activity and RBC Na+ concentrations. These findings indicate that cellular Na+ homeostasis is different in blacks and men as compared with whites and women. Since higher RBC Na+ concentrations have also been observed in patients with essential hypertension as compared with normotensive subjects, the higher intracellular Na+ concentrations in blacks and men may contribute to the greater predisposition of these groups to essential hypertension.

Full text

PDF
1818

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambrosioni E., Costa F. V., Montebugnoli L., Borghi C., Vasconi L., Tartagni F., Magnani B. Intralymphocytic sodium concentration: a sensitive index to identify young subjects at risk of hypertension. Clin Exp Hypertens. 1981;3(4):675–691. doi: 10.3109/10641968109033693. [DOI] [PubMed] [Google Scholar]
  2. Beilin L. J., Knight G. J., Munro-Faure A. D., Anderson J. The sodium, potassium, and water contents of red blood cells of healthy human adults. J Clin Invest. 1966 Nov;45(11):1817–1825. doi: 10.1172/JCI105485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beutler E., Kuhl W., Sacks P. Sodium-potassium-ATPase activity is influenced by ethnic origin and not by obesity. N Engl J Med. 1983 Sep 29;309(13):756–760. doi: 10.1056/NEJM198309293091303. [DOI] [PubMed] [Google Scholar]
  4. Blaustein M. P., Hamlyn J. M. Role of a natriuretic factor in essential hypertension: an hypothesis. Ann Intern Med. 1983 May;98(5 Pt 2):785–792. doi: 10.7326/0003-4819-98-5-785. [DOI] [PubMed] [Google Scholar]
  5. Blaustein M. P. Sodium ions, calcium ions, blood pressure regulation, and hypertension: a reassessment and a hypothesis. Am J Physiol. 1977 May;232(5):C165–C173. doi: 10.1152/ajpcell.1977.232.5.C165. [DOI] [PubMed] [Google Scholar]
  6. CADE J. R., SHALHOUB R. J., CANESSA-FISCHER M., PITTS R. F. Effect of strophanthidin on the renal tubules of dogs. Am J Physiol. 1961 Feb;200:373–379. doi: 10.1152/ajplegacy.1961.200.2.373. [DOI] [PubMed] [Google Scholar]
  7. CZACZKES J. W., ULLMANN T. D., ULLMANNL, BAR-KOCHBA Z. Determination of the red blood cell content of water, sodium, and potassium in normal subjects. J Lab Clin Med. 1963 May;61:873–878. [PubMed] [Google Scholar]
  8. Canessa M., Spalvins A., Adragna N., Falkner B. Red cell sodium countertransport and cotransport in normotensive and hypertensive blacks. Hypertension. 1984 May-Jun;6(3):344–351. doi: 10.1161/01.hyp.6.3.344. [DOI] [PubMed] [Google Scholar]
  9. Clegg G., Morgan D. B., Davidson C. The heterogeneity of essential hypertension. Relation between lithium efflux and sodium content of erythrocytes and a family history of hypertension. Lancet. 1982 Oct 23;2(8304):891–894. doi: 10.1016/s0140-6736(82)90864-9. [DOI] [PubMed] [Google Scholar]
  10. Cruickshank J. K., Beevers D. G. Epidemiology of hypertension: blood pressure in blacks and whites. Clin Sci (Lond) 1982 Jan;62(1):1–6. doi: 10.1042/cs0620001. [DOI] [PubMed] [Google Scholar]
  11. DOWBEN R. M., HOLLEY K. R. Erythrocyte electrolytes in muscle disease. J Lab Clin Med. 1959 Dec;54:867–870. [PubMed] [Google Scholar]
  12. Davidson J. S., Opie L. H., Keding B. Sodium-potassium cotransport activity as genetic marker in essential hypertension. Br Med J (Clin Res Ed) 1982 Feb 20;284(6315):539–541. doi: 10.1136/bmj.284.6315.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Edmondson R. P., Thomas R. D., Hilton P. J., Patrick J., Jones N. F. Abnormal leucocyte composition and sodium transport in essential hypertension. Lancet. 1975 May 3;1(7914):1003–1005. doi: 10.1016/s0140-6736(75)91947-9. [DOI] [PubMed] [Google Scholar]
  14. Frisancho A. R., Leonard W. R., Bollettino L. A. Blood pressure in blacks and whites and its relationship to dietary sodium and potassium intake. J Chronic Dis. 1984;37(7):515–519. doi: 10.1016/0021-9681(84)90002-x. [DOI] [PubMed] [Google Scholar]
  15. Funder J., Wieth J. O. Potassium, sodium, and water in normal human red blood cells. Scand J Clin Lab Invest. 1966;18(2):167–180. doi: 10.3109/00365516609051812. [DOI] [PubMed] [Google Scholar]
  16. Garay R. P., Nazaret C., Dagher G., Bertrand E., Meyer P. A genetic approach to the geography of hypertension : examination of Na+ - K+ cotransport in Ivory Coast Africans. Clin Exp Hypertens. 1981;3(4):861–870. doi: 10.3109/10641968109033708. [DOI] [PubMed] [Google Scholar]
  17. Grim C. E., Luft F. C., Miller J. Z., Meneely G. R., Battarbee H. D., Hames C. G., Dahl L. K. Racial differences in blood pressure in Evans County, Georgia: relationship to sodium and potassium intake and plasma renin activity. J Chronic Dis. 1980;33(2):87–94. doi: 10.1016/0021-9681(80)90032-6. [DOI] [PubMed] [Google Scholar]
  18. Haddy F. J. Mechanism, prevention and therapy of sodium-dependent hypertension. Am J Med. 1980 Nov;69(5):746–758. doi: 10.1016/0002-9343(80)90445-3. [DOI] [PubMed] [Google Scholar]
  19. Hamlyn J. M., Ringel R., Schaeffer J., Levinson P. D., Hamilton B. P., Kowarski A. A., Blaustein M. P. A circulating inhibitor of (Na+ + K+)ATPase associated with essential hypertension. Nature. 1982 Dec 16;300(5893):650–652. doi: 10.1038/300650a0. [DOI] [PubMed] [Google Scholar]
  20. Heinegård D., Tiderström G. Determination of serum creatinine by a direct colorimetric method. Clin Chim Acta. 1973 Feb 12;43(3):305–310. doi: 10.1016/0009-8981(73)90466-x. [DOI] [PubMed] [Google Scholar]
  21. KEITER H. G., BERMAN H., JONES H., MACLACHLAN E. The chemical composition of normal human red blood cells, including variability among centrifuged cells. Blood. 1955 Apr;10(4):370–376. [PubMed] [Google Scholar]
  22. Khosla T., Lowe C. R. Indices of obesity derived from body weight and height. Br J Prev Soc Med. 1967 Jul;21(3):122–128. doi: 10.1136/jech.21.3.122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. LOVE W. D., BURCH G. E. Plasma and erythrocyte sodium and potassium concentrations in a group of southern white and Negro blood donors. J Lab Clin Med. 1953 Feb;41(2):258–267. [PubMed] [Google Scholar]
  24. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  25. Lindenmayer G. E., Schwartz A., Thompson H. K., Jr A kinetic description for sodium and potassium effects on (Na+ plus K+)-adenosine triphosphatase: a model for a two-nonequivalent site potassium activation and an analysis of multiequivalent site models for sodium activation. J Physiol. 1974 Jan;236(1):1–28. doi: 10.1113/jphysiol.1974.sp010419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Losse H., Zidek W., Vetter H. Intracellular electrolytes and hypertension. Contrib Nephrol. 1982;30:179–184. doi: 10.1159/000406438. [DOI] [PubMed] [Google Scholar]
  27. Luft F. C., Grim C. E., Fineberg N., Weinberger M. C. Effects of volume expansion and contraction in normotensive whites, blacks, and subjects of different ages. Circulation. 1979 Apr;59(4):643–650. doi: 10.1161/01.cir.59.4.643. [DOI] [PubMed] [Google Scholar]
  28. Luft F. C., Grim C. E., Higgins J. T., Jr, Weinberger M. H. Differences in response to sodium administration in normotensive white and black subjects. J Lab Clin Med. 1977 Sep;90(3):555–562. [PubMed] [Google Scholar]
  29. Luft F. C., Rankin L. I., Bloch R., Weyman A. E., Willis L. R., Murray R. H., Grim C. E., Weinberger M. H. Cardiovascular and humoral responses to extremes of sodium intake in normal black and white men. Circulation. 1979 Sep;60(3):697–706. doi: 10.1161/01.cir.60.3.697. [DOI] [PubMed] [Google Scholar]
  30. MacGregor G. A., Fenton S., Alaghband-Zadeh J., Markandu N., Roulston J. E., de Wardener H. E. Evidence for a raised concentration of a circulating sodium transport inhibitor in essential hypertension. Br Med J (Clin Res Ed) 1981 Nov 21;283(6303):1355–1357. doi: 10.1136/bmj.283.6303.1355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Martinez-Maldonado M., Eknoyan G., Allen J. C., Suki W. N., Schwartz A. Urine dilution and concentration after digoxin infusion into the renal artery of dogs. Proc Soc Exp Biol Med. 1970 Jul;134(3):855–860. doi: 10.3181/00379727-134-34898. [DOI] [PubMed] [Google Scholar]
  32. Munro-Faure A. D., Hill D. M., Anderson J. Ethnic differences in human blood cell sodium concentration. Nature. 1971 Jun 18;231(5303):457–458. doi: 10.1038/231457a0. [DOI] [PubMed] [Google Scholar]
  33. Pamnani M., Huot S., Buggy J., Clough D., Haddy F. Demonstration of a humoral inhibitor of the Na+-K+ pump in some models of experimental hypertension. Hypertension. 1981 Nov-Dec;3(6 Pt 2):II–96-101. doi: 10.1161/01.hyp.3.6_pt_2.ii-96. [DOI] [PubMed] [Google Scholar]
  34. Priestland R. N., Whittam R. The influence of external sodium ions on the sodium pump in erythrocytes. Biochem J. 1968 Sep;109(3):369–374. doi: 10.1042/bj1090369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Robinson J. D. Allosteric interactions with the (Na+ + K+)-dependent adenosine triphosphatase. Nature. 1968 Dec 28;220(5174):1325–1326. doi: 10.1038/2201325a0. [DOI] [PubMed] [Google Scholar]
  36. Sachs J. R., Ellory J. C., Kropp D. L., Dunham P. B., Hoffman J. F. Antibody-induced alterations in the kinetic characteristics of the Na:K pump in goat red blood cells. J Gen Physiol. 1974 Apr;63(4):389–414. doi: 10.1085/jgp.63.4.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schachter J., Kuller L. H. Blood volume expansion among blacks: an hypothesis. Med Hypotheses. 1984 May;14(1):1–19. doi: 10.1016/0306-9877(84)90057-4. [DOI] [PubMed] [Google Scholar]
  38. Schwartz A. Cell membrane Na+, K+-ATPase and sarcoplasmic reticulum: possible regulators of intracellular ion activity. Fed Proc. 1976 May 1;35(6):1279–1282. [PubMed] [Google Scholar]
  39. Schwartz A., Lindenmayer G. E., Allen J. C. The sodium-potassium adenosine triphosphatase: pharmacological, physiological and biochemical aspects. Pharmacol Rev. 1975 Mar;27(01):3–134. [PubMed] [Google Scholar]
  40. Sever P. S., Peart W. S., Meade T. W., Davies I. B., Gordon D. Ethnic differences in blood pressure with observations on noradrenaline and renin. 1. A working population. Clin Exp Hypertens. 1979;1(6):733–744. doi: 10.3109/10641967909068636. [DOI] [PubMed] [Google Scholar]
  41. Tuck M. L., Gross C., Maxwell M. H., Brickman A. S., Krasnoshtein G., Mayes D. Erythrocyte Na+,K+ cotransport and Na+,K+ pump in black and caucasian hypertensive patients. Hypertension. 1984 Jul-Aug;6(4):536–544. doi: 10.1161/01.hyp.6.4.536. [DOI] [PubMed] [Google Scholar]
  42. VALBERG L. S., HOLT J. M., PAULSON E., SZIVEK J. SPECTROCHEMICAL ANALYSIS OF SODIUM, POTASSIUM, CALCIUM, MAGNESIUM, COPPER, AND ZINC IN NORMAL HUMAN ERYTHROCYTES. J Clin Invest. 1965 Mar;44:379–389. doi: 10.1172/JCI105151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Voors A. W., Berenson G. S., Dalferes E. R., Webber L. S., Shuler S. E. Racial differences in blood pressure control. Science. 1979 Jun 8;204(4397):1091–1094. doi: 10.1126/science.451554. [DOI] [PubMed] [Google Scholar]
  44. Weder A. B., Torretti B. A., Julius S. Racial differences in erythrocyte cation transport. Hypertension. 1984 Jan-Feb;6(1):115–123. doi: 10.1161/01.hyp.6.1.115. [DOI] [PubMed] [Google Scholar]
  45. Woods K. L., Beevers D. G., West M. J. Racial differences in red cell cation transport and their relationship to essential hypertension. Clin Exp Hypertens. 1981;3(4):655–662. doi: 10.3109/10641968109033691. [DOI] [PubMed] [Google Scholar]
  46. Woods K. L., Beevers D. G., West M. Familial abnormality of erythrocyte cation transport in essential hypertension. Br Med J (Clin Res Ed) 1981 Apr 11;282(6271):1186–1188. doi: 10.1136/bmj.282.6271.1186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. de Wardener H. E., MacGregor G. A. Dahl's hypothesis that a saluretic substance may be responsible for a sustained rise in arterial pressure: its possible role in essential hypertension. Kidney Int. 1980 Jul;18(1):1–9. doi: 10.1038/ki.1980.104. [DOI] [PubMed] [Google Scholar]
  48. de Wardener H. E., MacGregor G. A. The role of a circulating inhibitor of Na+-K+-ATPase in essential hypertension. Am J Nephrol. 1983 Mar-Jun;3(2-3):88–91. doi: 10.1159/000166697. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES