Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1981 Feb;67(2):341–346. doi: 10.1104/pp.67.2.341

Control of Enzyme Activities in Cotton Cotyledons during Maturation and Germination 1

IV. β-OXIDATION

Jan A Miernyk 1,2, Richard N Trelease 1
PMCID: PMC425679  PMID: 16661671

Abstract

Microbodies were isolated by zonal-rotor sucrose density gradient centrifugation from cotton (cv. DP 61) seeds at two distinct stages of embryogenesis (38 and 50 days after anthesis) and after 48 hours postgerminative growth. In all cases, β-oxidation activity (palmitoyl-coenzyme A (CoA)-dependent reduction of acetylpyridine adenine dinucleotide or production of acetyl-CoA) and activities of the enzymes palmitate:CoA ligase, acyl-CoA oxidase, enoyl hydratase, 3-hydroxyacyl-CoA dehydrogenase, and 3-oxoacyl-CoA thiolase, plus catalase, were localized exclusively in the microbody fractions, i.e. none of the activities were associated with mitochondria. Acyl-CoA dehydrogenase activity could not be detected in any of the gradient fractions or in homogenates.

Glyoxysomes isolated from cotyledons of 48-hour-germinated seeds were capable of β-oxidation of acyl-CoAs of various chain lengths and degrees of unsaturation and were the sole site of 3-cis-2-trans enoyl-CoA isomerase activity. Direct measurement of the isomerase is the first demonstration of an enzyme required for unsaturated fatty acid catabolism in a higher plant. Palmitoyl-carnitine was not oxidized by any of the organelle fractions.

Subfractionation of glyoxysomes by osmotic shock revealed that none of the β-oxidation enzymes were tightly membrane-associated.

Full text

PDF
344

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bieglmayer C., Graf J., Ruis H. Membranes of glyoxysomes from castor-bean endosperm. Enzymes bound to purified-membrane preparations. Eur J Biochem. 1973 Sep 3;37(3):553–562. doi: 10.1111/j.1432-1033.1973.tb03018.x. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Breidenbach R. W., Beevers H. Association of the glyoxylate cycle enzymes in a novel subcellular particle from castor bean endosperm. Biochem Biophys Res Commun. 1967 May 25;27(4):462–469. doi: 10.1016/s0006-291x(67)80007-x. [DOI] [PubMed] [Google Scholar]
  4. Ching T. M. Compartmental utilization of carboxyl-C-tripalmitin by tissue homogenate of pine seeds. Plant Physiol. 1973 Feb;51(2):278–284. doi: 10.1104/pp.51.2.278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Choinski J. S., Trelease R. N. Control of Enzyme Activities in Cotton Cotyledons during Maturation and Germination: II. Glyoxysomal Enzyme Development in Embryos. Plant Physiol. 1978 Jul;62(1):141–145. doi: 10.1104/pp.62.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cooper T. G. Activation of fatty acids in castor bean endosperm. J Biol Chem. 1971 Jun 10;246(11):3451–3455. [PubMed] [Google Scholar]
  7. Cooper T. G., Beevers H. Beta oxidation in glyoxysomes from castor bean endosperm. J Biol Chem. 1969 Jul 10;244(13):3514–3520. [PubMed] [Google Scholar]
  8. Cooper T. G., Beevers H. Mitochondria and glyoxysomes from castor bean endosperm. Enzyme constitutents and catalytic capacity. J Biol Chem. 1969 Jul 10;244(13):3507–3513. [PubMed] [Google Scholar]
  9. Dommes V., Kunau W. H. A convenient assay for acyl-CoA-dehydrogenases. Anal Biochem. 1976 Apr;71(2):571–578. doi: 10.1016/s0003-2697(76)80026-7. [DOI] [PubMed] [Google Scholar]
  10. GOLDMAN P., VAGELOS P. R. The specificity of triglyceride synthesis from diglycerides in chicken adipose tissue. J Biol Chem. 1961 Oct;236:2620–2623. [PubMed] [Google Scholar]
  11. Graves L. B., Jr, Becker W. M. Beta-oxidation in glyoxysomes from Euglena. J Protozool. 1974 Nov;21(5):771–774. doi: 10.1111/j.1550-7408.1974.tb03750.x. [DOI] [PubMed] [Google Scholar]
  12. Hryb D. J., Hogg J. F. Chain length specificities of peroxisomal and mitochondrial beta-oxidation in rat liver. Biochem Biophys Res Commun. 1979 Apr 27;87(4):1200–1206. doi: 10.1016/s0006-291x(79)80034-0. [DOI] [PubMed] [Google Scholar]
  13. Huang A. H., Beevers H. Localization of enzymes within microbodies. J Cell Biol. 1973 Aug;58(2):379–389. doi: 10.1083/jcb.58.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Huang A. H. Comparative studies of glyoxysomes from various Fatty seedlings. Plant Physiol. 1975 May;55(5):870–874. doi: 10.1104/pp.55.5.870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hutton D., Stumpf P. K. Fat Metabolism in Higher Plants. XXXVII. Characterization of the beta-Oxidation Systems From Maturing and Germinating Castor Bean Seeds. Plant Physiol. 1969 Apr;44(4):508–516. doi: 10.1104/pp.44.4.508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hutton D., Stumpf P. K. Fat metabolism in higher plants. LXII. The pathway of ricinoleic acid catabolism in the germinating castor bean (Ricinus communis L.) and pea (Pisum sativum L.). Arch Biochem Biophys. 1971 Jan;142(1):48–60. doi: 10.1016/0003-9861(71)90258-x. [DOI] [PubMed] [Google Scholar]
  17. Kawamoto S., Nozaki C., Tanaka A., Fukui S. Fatty acid beta-oxidation system in microbodies of n-alkane-grown Candida tropicalis. Eur J Biochem. 1978 Feb;83(2):609–613. doi: 10.1111/j.1432-1033.1978.tb12130.x. [DOI] [PubMed] [Google Scholar]
  18. Kawamoto S., Ueda M., Nozaki C., Yamamura M., Tanaka A., Fukui S. Localization of carnitine acetyltransferase in peroxisomes and in mitochondria of n-alkane-grown Candida tropicalis. FEBS Lett. 1978 Dec 1;96(1):37–40. doi: 10.1016/0014-5793(78)81057-6. [DOI] [PubMed] [Google Scholar]
  19. Lazarow P. B. Rat liver peroxisomes catalyze the beta oxidation of fatty acids. J Biol Chem. 1978 Mar 10;253(5):1522–1528. [PubMed] [Google Scholar]
  20. Markwell M. A., McGroarty E. J., Bieber L. L., Tolbert N. E. The subcellular distribution of carnitine acyltransferases in mammalian liver and kidney. A new peroxisomal enzyme. J Biol Chem. 1973 May 25;248(10):3426–3432. [PubMed] [Google Scholar]
  21. Miernyk J. A., Trelease R. N., Choinski J. S. Malate synthase activity in cotton and other ungerminated oilseeds: a survey. Plant Physiol. 1979 Jun;63(6):1068–1071. doi: 10.1104/pp.63.6.1068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Moreau R. A., Huang A. H. Gluconeogenesis from storage wax in the cotyledons of jojoba seedlings. Plant Physiol. 1977 Aug;60(2):329–333. doi: 10.1104/pp.60.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nishimura T., Saito T., Tomita K. Purification and properties of beta-ketothiolase from Zoogloea ramigera. Arch Microbiol. 1978 Jan 23;116(1):21–27. doi: 10.1007/BF00408729. [DOI] [PubMed] [Google Scholar]
  24. Overath P., Raufuss E. M. The induction of the enzymes of fatty acid degradation in Escherichia coli. Biochem Biophys Res Commun. 1967 Oct 11;29(1):28–33. doi: 10.1016/0006-291x(67)90535-9. [DOI] [PubMed] [Google Scholar]
  25. Panter R. A., Mudd J. B. Carnitine levels in some higher plants. FEBS Lett. 1969 Oct 21;5(2):169–170. doi: 10.1016/0014-5793(69)80322-4. [DOI] [PubMed] [Google Scholar]
  26. REBEIZ C. A., CASTELFRANCO P., ENGELBRECHT A. H. FRACTIONATION AND PROPERTIES OF AN EXTRA-MITOCHONDRIAL ENZYME SYSTEM FROM PEANUTS CATALYZING THE BETA-OXIDATION OF PALMITIC ACID. Plant Physiol. 1965 Mar;40:281–286. doi: 10.1104/pp.40.2.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ritchie G. A., Senior P. J., Dawes E. A. The purification and characterization of acetoacetyl-coenzyme A reductase from Azotobacter beijerinckii. Biochem J. 1971 Jan;121(2):309–316. doi: 10.1042/bj1210309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stoffel W., Grol M. Purification and properties of 3-cis-2-trans-enoyl-CoA isomerase (dodecenoyl-CoA delta-isomerase) from rat liver mitochondria. Hoppe Seylers Z Physiol Chem. 1978 Dec;359(12):1777–1782. doi: 10.1515/bchm2.1978.359.2.1777. [DOI] [PubMed] [Google Scholar]
  29. Yamada M., Stumpf P. K. Fat metabolism in higher plants. XXIV. A soluble beta-oxidative system from germinating seeds of Ricinus communis. Plant Physiol. 1965 Jul;40(4):653–658. doi: 10.1104/pp.40.4.653. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES