Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1981 Dec;68(6):1334–1338. doi: 10.1104/pp.68.6.1334

Evidence for Receptor Function of Auxin Binding Sites in Maize 1

RED LIGHT INHIBITION OF MESOCOTYL ELONGATION AND AUXIN BINDING

Jonathan D Walton 1,2, Peter M Ray 1
PMCID: PMC426098  PMID: 16662103

Abstract

When 3- to 4-day-old dark-grown maize (Zea mays L. WF9 × Bear 38) seedlings are given red light, auxin-binding activity localized on endoplasmic reticulum membranes of the mesocotyl begins to decrease after 4 hours; by 9 hours, it falls to 50 to 60% of that in dark controls, on either a fresh weight or total particulate protein basis. Endoplasmic reticulum-localized NADH:cytochrome c reductase activity decreases in parallel. Loss of binding is due to decrease in number of sites, with no change in their affinity for auxin (Kd 0.2 micromolar for naphthalene-1-acetic acid). Elongation of mesocotyl segments in response to auxin decreases with a similar time course. Elongation of segments from irradiated plants shows the same apparent affinity for auxin as that of the dark controls. Auxin-binding activity and elongation response also decrease in parallel down the length of the mesocotyl. These observations are consistent with a role of endoplasmic reticulum-localized auxin binding sites as receptors for auxin action in cell elongation.

Full text

PDF
1338

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  3. Nitsch J. P., Nitsch C. Studies on the Growth of Coleoptile and First Internode Sections. A New, Sensitive, Straight-Growth Test for Auxins. Plant Physiol. 1956 Mar;31(2):94–111. doi: 10.1104/pp.31.2.94. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ray P. M. Auxin-binding Sites of Maize Coleoptiles Are Localized on Membranes of the Endoplasmic Reticulum. Plant Physiol. 1977 Apr;59(4):594–599. doi: 10.1104/pp.59.4.594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ray P. M., Dohrmann U. Characterization of naphthaleneacetic Acid binding to receptor sites on cellular membranes of maize coleoptile tissue. Plant Physiol. 1977 Mar;59(3):357–364. doi: 10.1104/pp.59.3.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Vanderhoef L. N., Briggs W. R. Red Light-inhibited Mesocotyl Elongation in Maize Seedlings: I. The Auxin Hypothesis. Plant Physiol. 1978 Apr;61(4):534–537. doi: 10.1104/pp.61.4.534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Vanderhoef L. N., Quail P. H., Briggs W. R. Red Light-inhibited Mesocotyl Elongation in Maize Seedlings: II. Kinetic and Spectral Studies. Plant Physiol. 1979 Jun;63(6):1062–1067. doi: 10.1104/pp.63.6.1062. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES