Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1982 Feb;69(2):317–322. doi: 10.1104/pp.69.2.317

Enhancement of Wound-Induced Ethylene Synthesis by Ethylene in Preclimacteric Cantaloupe 1

Neil E Hoffman 1, Shang Fa Yang 1
PMCID: PMC426201  PMID: 16662200

Abstract

Although intact fruits of unripe cantaloupe (Cucumis melo L.) produce very little ethylene, a massive increase in ethylene production occurred in response to excision. The evidence indicates that this wound ethylene is produced from methionine via 1-aminocyclopropanecarboxylic acid (ACC) as in ripening fruits. Excision induced an increase in both ACC synthase and the enzyme converting ACC to ethylene. Ethylene further increased the activity of the enzyme system converting ACC to ethylene. The induction by ethylene required a minimum exposure of 1 hour; longer exposure had increasingly larger effect. The response was saturated at approximately 3 microliters per liter ethylene and was inhibited by Ag+. Neither ethylene nor ACC had a promotive or inhibitory effect on ACC synthase beyond the effect attributable to wounding.

Full text

PDF
318

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams D. O., Yang S. F. Ethylene biosynthesis: Identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad Sci U S A. 1979 Jan;76(1):170–174. doi: 10.1073/pnas.76.1.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beyer E. M. A potent inhibitor of ethylene action in plants. Plant Physiol. 1976 Sep;58(3):268–271. doi: 10.1104/pp.58.3.268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beyer E. M. Effect of silver ion, carbon dioxide, and oxygen on ethylene action and metabolism. Plant Physiol. 1979 Jan;63(1):169–173. doi: 10.1104/pp.63.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Frenkel C., Klein I., Dilley D. R. Protein synthesis in relation to ripening of pome fruits. Plant Physiol. 1968 Jul;43(7):1146–1153. doi: 10.1104/pp.43.7.1146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lieberman M., Baker J. E., Sloger M. Influence of Plant Hormones on Ethylene Production in Apple, Tomato, and Avocado Slices during Maturation and Senescence. Plant Physiol. 1977 Aug;60(2):214–217. doi: 10.1104/pp.60.2.214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lilley R. M. Isolation of Functionally Intact Rhodoplasts from Griffithsia monilis (Ceramiaceae, Rhodophyta). Plant Physiol. 1981 Jan;67(1):5–8. doi: 10.1104/pp.67.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lizada M. C., Yang S. F. A simple and sensitive assay for 1-aminocyclopropane-1-carboxylic acid. Anal Biochem. 1979 Nov 15;100(1):140–145. doi: 10.1016/0003-2697(79)90123-4. [DOI] [PubMed] [Google Scholar]
  8. Lyons J. M., McGlasson W. B., Pratt H. K. Ethylene Production, Respiration, & Internal Gas Concentrations in Cantaloupe Fruits at Various Stages of Maturity. Plant Physiol. 1962 Jan;37(1):31–36. doi: 10.1104/pp.37.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. McGlasson W. B., Pratt H. K. Effects of Wounding on Respiration and Ethylene Production by Cantaloupe Fruit Tissue. Plant Physiol. 1964 Jan;39(1):128–132. doi: 10.1104/pp.39.1.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Patil S. S., Tang C. S. Inhibition of ethylene evolution in papaya pulp tissue by benzyl isothiocyanate. Plant Physiol. 1974 Apr;53(4):585–588. doi: 10.1104/pp.53.4.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Yu Y. B., Adams D. O., Yang S. F. 1-Aminocyclopropanecarboxylate synthase, a key enzyme in ethylene biosynthesis. Arch Biochem Biophys. 1979 Nov;198(1):280–286. doi: 10.1016/0003-9861(79)90420-x. [DOI] [PubMed] [Google Scholar]
  12. Yu Y. B., Yang S. F. Auxin-induced Ethylene Production and Its Inhibition by Aminoethyoxyvinylglycine and Cobalt Ion. Plant Physiol. 1979 Dec;64(6):1074–1077. doi: 10.1104/pp.64.6.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Yu Y. B., Yang S. F. Biosynthesis of wound ethylene. Plant Physiol. 1980 Aug;66(2):281–285. doi: 10.1104/pp.66.2.281. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES