Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1972 Mar;69(3):686–689. doi: 10.1073/pnas.69.3.686

Ribosomes Cannot Interact Simultaneously with Elongation Factors EF Tu and EF G*

Nathan Richman 1, James W Bodley 1
PMCID: PMC426535  PMID: 4551984

Abstract

Prior binding of EF G and GDP to 70S ribosomes from Escherichia coli prevents the subsequent binding of aminoacyl-tRNA, mediated by EF Tu. However, the interaction of EF Tu·GTP·aminoacyl-tRNA with the 30S subunit, which results in aminoacyl-tRNA binding without GTP hydrolysis, appears to be unaffected by EF G, GDP, and fusidic acid. We conclude that elongation factors Tu and G cannot interact simultaneously with the ribosome. The simplest interpretation of these and earlier data is that EF G and EF Tu interact with the same, or overlapping, 50S ribosomal sites in the course of GTP hydrolysis associated with translocation and aminoacyl-tRNA binding, respectively. In any event, these factors must alternate in binding to the ribosome in the course of each elongation cycle.

Keywords: E. coli, translocation, aminoacyl-tRNA binding, fusidic acid, GTP

Full text

PDF
688

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baliga B. S., Munro H. N. Specificity of mammalian transferase II binding to ribosomes. Nat New Biol. 1971 Oct 27;233(43):257–258. doi: 10.1038/newbio233257a0. [DOI] [PubMed] [Google Scholar]
  2. Bodley J. W., Lin L., Highland J. H. Studies on translocation. VI. Thiostrepton prevents the formation of a ribosome-G factor-guanine nucleotide complex. Biochem Biophys Res Commun. 1970 Dec 24;41(6):1406–1411. doi: 10.1016/0006-291x(70)90543-7. [DOI] [PubMed] [Google Scholar]
  3. Bodley J. W., Lin L. Interaction of E. coli G factor with the 50S ribosomal subunit. Nature. 1970 Jul 4;227(5253):60–61. doi: 10.1038/227060a0. [DOI] [PubMed] [Google Scholar]
  4. Bodley J. W., Zieve F. J., Lin L. Studies on translocation. IV. The hydrolysis of a single round of guanosine triphosphate in the presence of fusidic acid. J Biol Chem. 1970 Nov 10;245(21):5662–5667. [PubMed] [Google Scholar]
  5. Bodley J. W., Zieve F. J., Lin L., Zieve S. T. Studies on translocation. 3. Conditions necessary for the formation and detection of a stable ribosome-G factor-guanosine diphosphate complex in the presence of fusidic acid. J Biol Chem. 1970 Nov 10;245(21):5656–5661. [PubMed] [Google Scholar]
  6. Bodley J. W., Zieve F. J. On the specificity of the two ribosomal binding sites: studies with tetracycline. Biochem Biophys Res Commun. 1969 Aug 7;36(3):463–468. doi: 10.1016/0006-291x(69)90587-7. [DOI] [PubMed] [Google Scholar]
  7. Brot N., Redfield B., Weissbach H. Studies on the reaction of the aminoacyl-tRNA-Tu-GTP complex with ribosomal subunits. Biochem Biophys Res Commun. 1970 Dec 24;41(6):1388–1395. doi: 10.1016/0006-291x(70)90541-3. [DOI] [PubMed] [Google Scholar]
  8. Brot N., Spears C., Weissbach H. The interaction of transfer factor G, ribosomes, and guanosine nucleotides in the presence of fusidic acid. Arch Biochem Biophys. 1971 Mar;143(1):286–296. doi: 10.1016/0003-9861(71)90211-6. [DOI] [PubMed] [Google Scholar]
  9. Cundliffe E. The mode of action of thiostreption in vivo. Biochem Biophys Res Commun. 1971 Aug 20;44(4):912–917. doi: 10.1016/0006-291x(71)90798-4. [DOI] [PubMed] [Google Scholar]
  10. Gordon J. Hydrolysis of guanosine 5'-triphosphate associated wh binding of aminoacyl transfer ribonucleic acid to ribosomes. J Biol Chem. 1969 Oct 25;244(20):5680–5686. [PubMed] [Google Scholar]
  11. Highland J. H., Lin L., Bodley J. W. Protection of ribosomes from thiostrepton inactivation by the binding of G factor and guanosine diphosphate. Biochemistry. 1971 Nov 23;10(24):4404–4409. doi: 10.1021/bi00800a009. [DOI] [PubMed] [Google Scholar]
  12. Lucas-Lenard J. Protein biosynthesis. Annu Rev Biochem. 1971;40:409–448. doi: 10.1146/annurev.bi.40.070171.002205. [DOI] [PubMed] [Google Scholar]
  13. Miller D. L., Weissbach H. Studies on the purification and properties of factor Tu from E. coli. Arch Biochem Biophys. 1970 Nov;141(1):26–37. doi: 10.1016/0003-9861(70)90102-5. [DOI] [PubMed] [Google Scholar]
  14. Modolell J., Cabrer B., Parmeggiani A., Vazquez D. Inhibition by siomycin and thiostrepton of both aminoacyl-tRNA and factor G binding to ribosomes. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1796–1800. doi: 10.1073/pnas.68.8.1796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Modolell J., Vazquez D., Monro R. E. Ribosomes, G-factor and siomycin. Nat New Biol. 1971 Mar 24;230(12):109–112. doi: 10.1038/newbio230109a0. [DOI] [PubMed] [Google Scholar]
  16. Staehelin T., Maglott D. M., Monro R. E. On the catalytic center of peptidyl transfer: a part of the 50 S ribosome structure. Cold Spring Harb Symp Quant Biol. 1969;34:39–48. doi: 10.1101/sqb.1969.034.01.008. [DOI] [PubMed] [Google Scholar]
  17. Weisblum B., Demohn V. Inhibition by thiostrepton of the formation of a ribosome-bound guanine nucleotide complex. FEBS Lett. 1970 Dec;11(3):149–152. doi: 10.1016/0014-5793(70)80515-4. [DOI] [PubMed] [Google Scholar]
  18. Weissbach H., Redfield B., Hachmann J. Studies on the role of factor Ts in aminoacyl-tRNA binding to ribosomes. Arch Biochem Biophys. 1970 Nov;141(1):384–386. doi: 10.1016/0003-9861(70)90150-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES