Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1972 Apr;69(4):859–862. doi: 10.1073/pnas.69.4.859

Nitrogen Ligands at the Active Site of Alkaline Phosphatase

June S Taylor 1, Joseph E Coleman 1
PMCID: PMC426581  PMID: 4337243

Abstract

The two Zn(II) ions of native Escherichia coli alkaline phosphatase (EC 3.1.3.1) that are necessary for activity have been replaced by 63Cu(II). Titration of apoenzyme with up to 2 eq of Cu(II) gives a homogeneous species with an electron spin resonance typical for Cu(II) in an axially symmetric environment, with Az = 496 MHz, gz = gǁ = 2.27, and gx = gy = 2.05. At least seven nitrogen hyperfine lines, spaced 11 G apart, are clearly resolved on the M = +[unk] Cu(II) hyperfine peak in the parallel region. When more than 2 eq of Cu(II) are added, the electron spin resonance spectrum shows at least two types of Cu(II) binding sites; the additional site, or sites, are characterized by lower g and higher Az values. When Cu(II) is added to native Zn(II) alkaline phosphatase or to apoenzyme incubated with 2 eq of Zn(II), the electron spin resonance spectrum shows little or no trace of the species with higher g values and nitrogen splitting. These results indicate that the species with higher g represents copper bound at the site normally occupied by the 2 Zn (II) ions necessary for enzyme activity, and that the metal ion at this site has at least 3 equivalent nitrogen ligands, probably histidyl side chains.

Keywords: Zn, Cu, E. coli, electron spin resonance

Full text

PDF
861

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Applebury M. L., Coleman J. E. Escherichia coli alkaline phosphatase. Metal binding, protein conformation, and quaternary structure. J Biol Chem. 1969 Jan 25;244(2):308–318. [PubMed] [Google Scholar]
  2. Applebury M. L., Coleman J. E. Escherichia coli co (II) alkaline phsophatase. J Biol Chem. 1969 Feb 25;244(4):709–718. [PubMed] [Google Scholar]
  3. Applebury M. L., Johnson B. P., Coleman J. E. Phosphate binding to alkaline phosphatase. Metal ion dependence. J Biol Chem. 1970 Oct 10;245(19):4968–4976. [PubMed] [Google Scholar]
  4. Applebury M. L., Johnson B. P., Coleman J. E. Phosphate binding to alkaline phosphatase. Metal ion dependence. J Biol Chem. 1970 Oct 10;245(19):4968–4976. [PubMed] [Google Scholar]
  5. Csopak H., Falk K. E. The specific binding of copper(II) to alkaline phosphatase of E. coli. FEBS Lett. 1970 Apr 2;7(2):147–150. doi: 10.1016/0014-5793(70)80142-9. [DOI] [PubMed] [Google Scholar]
  6. Harris M. I., Coleman J. E. The biosynthesis of apo- and metalloalkaline phosphatases of Escherichia coli. J Biol Chem. 1968 Oct 10;243(19):5063–5073. [PubMed] [Google Scholar]
  7. Lazdunski C., Chappelet D., Petitclerc C., Leterrier F., Douzou P., Lazdunski M. The Cu2 plus-alkaline phosphatase of Escherichia coli. Eur J Biochem. 1970 Dec;17(2):239–245. doi: 10.1111/j.1432-1033.1970.tb01159.x. [DOI] [PubMed] [Google Scholar]
  8. Lazdunski C., Petitclerc C., Chappelet D., Leterrier F., Douzou P., Lazdunski M. Tight and loose metal binding sites in the apoalkaline phosphatase of E. coli. Reconstitution of the Ca2+--phosphatase from the apoenzyme EPR study of the Mn2+-phosphatase. Biochem Biophys Res Commun. 1970 Aug 11;40(3):589–593. doi: 10.1016/0006-291x(70)90943-5. [DOI] [PubMed] [Google Scholar]
  9. Lazdunski M., Petitclerc C., Chappelet D., Lazdunski C. Flip-flop mechanisms in enzymology. A model: the alkaline phosphatase of Escherichia coli. Eur J Biochem. 1971 May 11;20(1):124–139. doi: 10.1111/j.1432-1033.1971.tb01370.x. [DOI] [PubMed] [Google Scholar]
  10. Tait G. H., Vallee B. L. Studies on the active center of alkaline phosphatase of E. coli. Proc Natl Acad Sci U S A. 1966 Oct;56(4):1247–1251. doi: 10.1073/pnas.56.4.1247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Taylor J. S., Coleman J. E. Electron spin resonance of metallocarbonic anhydrases. J Biol Chem. 1971 Nov 25;246(22):7058–7067. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES