Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1972 Jun;69(6):1384–1386. doi: 10.1073/pnas.69.6.1384

Hyaluronate in Morphogenesis: Inhibition of Chondrogenesis In Vitro

Bryan P Toole 1,2, Geraldine Jackson 1,2, Jerome Gross 1,2
PMCID: PMC426707  PMID: 4504347

Abstract

Purified hyaluronate, at a concentration as low as 1 ng/ml, blocks the formation of colonies and cartilage nodules in stationary cultures of cells, isolated by treatment with trypsin, from embryonic chick somites and limb buds. This phenomenon in vitro is correlated with sequences of hyaluronate production and hyaluronidase activity during chondrogenesis in embryonic and regenerating tissues in vivo. An hypothesis is proposed in which hyaluronate acts as a regulator or inhibitor of mesenchymal cell aggregation in embryogenesis, its synthesis and removal being part of the mechanism of timing of migration, aggregation, and subsequent differentiation.

Keywords: chick somites, chick limb buds, cartilage nodule formation

Full text

PDF
1386

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bryan J. Studies on clonal cartilage strains. I. Effect of contaminant non-cartilage cells. Exp Cell Res. 1968 Oct;52(2):319–326. doi: 10.1016/0014-4827(68)90473-4. [DOI] [PubMed] [Google Scholar]
  3. Burger M. M., Noonan K. D. Restoration of normal growth by covering of agglutinin sites on tumour cell surface. Nature. 1970 Nov 7;228(5271):512–515. doi: 10.1038/228512a0. [DOI] [PubMed] [Google Scholar]
  4. Chacko S., Holtzer S., Holtzer H. Suppression of chondrogenic expression in mixtures of normal chondrocytes and BUDR-altered chondrocytes grown in vitro. Biochem Biophys Res Commun. 1969 Jan 27;34(2):183–189. doi: 10.1016/0006-291x(69)90629-9. [DOI] [PubMed] [Google Scholar]
  5. Coon H. G., Cahn R. D. Differentiation in vitro: effects of Sephadex fractions of chick embryo extract. Science. 1966 Sep 2;153(3740):1116–1119. doi: 10.1126/science.153.3740.1116. [DOI] [PubMed] [Google Scholar]
  6. Coon H. G. Clonal stability and phenotypic expression of chick cartilage cells in vitro. Proc Natl Acad Sci U S A. 1966 Jan;55(1):66–73. doi: 10.1073/pnas.55.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Darzynkiewicz Z., Balazs E. A. Effect of connective tissue intercellular matrix on lymphocyte stimulation. Exp Cell Res. 1971 May;66(1):113–123. doi: 10.1016/s0014-4827(71)80018-6. [DOI] [PubMed] [Google Scholar]
  8. Humphreys T. Cell surface components participating in aggregation: evidence for a new cell particulate. Exp Cell Res. 1965 Dec;40(3):539–543. doi: 10.1016/0014-4827(65)90232-6. [DOI] [PubMed] [Google Scholar]
  9. KURODA Y. STUDIES ON CARTILAGE CELLS IN VITRO. I. MORPHOLOGY AND GROWTH OF CARTILAGE CELLS IN MONOLAYER CULTURES. Exp Cell Res. 1964 Jul;35:326–336. doi: 10.1016/0014-4827(64)90099-0. [DOI] [PubMed] [Google Scholar]
  10. Kallman F., Grobstein C. Localization of glucosamine-incorporating materials at epithelial surfaces during salivary epithelio-mesenchymal interaction in vitro. Dev Biol. 1966 Aug;14(1):52–67. doi: 10.1016/0012-1606(66)90005-4. [DOI] [PubMed] [Google Scholar]
  11. Khan T., Overton J. Staining of intercellular material in reaggregating chick liver and cartilage cells. J Exp Zool. 1969 Jun;171(2):161–173. doi: 10.1002/jez.1401710204. [DOI] [PubMed] [Google Scholar]
  12. Kojima K., Yamagata T. Glycosaminoglycans and electrokinetic behavior of rat ascites hepatoma cells. Exp Cell Res. 1971 Jul;67(1):142–146. doi: 10.1016/0014-4827(71)90629-x. [DOI] [PubMed] [Google Scholar]
  13. Kraemer P. M. Heparan sulfates of cultured cells. I. Membrane-associated and cell-sap species in Chinese hamster cells. Biochemistry. 1971 Apr 13;10(8):1437–1445. doi: 10.1021/bi00784a026. [DOI] [PubMed] [Google Scholar]
  14. Kvist T. N., Finnegan C. V. The distribution of glycosaminoglycans in the axial region of the developing chick embryo. 1. Histochemical analysis. J Exp Zool. 1970 Oct;175(2):221–239. doi: 10.1002/jez.1401750209. [DOI] [PubMed] [Google Scholar]
  15. Levenson G. E. Behavior in culture of three types of chondrocytes, and their response to ascorbic acid. Exp Cell Res. 1970 Oct;62(2):271–285. doi: 10.1016/0014-4827(70)90555-0. [DOI] [PubMed] [Google Scholar]
  16. Lilien J. E., Moscona A. A. Cell aggregation: its enhancement by a supernatant from cultures of homologous cells. Science. 1967 Jul 7;157(3784):70–72. doi: 10.1126/science.157.3784.70. [DOI] [PubMed] [Google Scholar]
  17. McConnachie P. R., Ford P. Acid mucopolysaccharides in the development of the Pacific great skate, Raja binoculata. J Embryol Exp Morphol. 1966 Aug;16(1):17–28. [PubMed] [Google Scholar]
  18. Miller E. J. Isolation and characterization of a collagen from chick cartilage containing three identical alpha chains. Biochemistry. 1971 Apr 27;10(9):1652–1659. doi: 10.1021/bi00785a024. [DOI] [PubMed] [Google Scholar]
  19. Miller E. J., Matukas V. J. Chick cartilage collagen: a new type of alpha 1 chain not present in bone or skin of the species. Proc Natl Acad Sci U S A. 1969 Dec;64(4):1264–1268. doi: 10.1073/pnas.64.4.1264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nameroff M., Holtzer H. The loss of phenotypic traits by differentiated cells. IV. Changes in polysaccharides produced by dividing chondrocytes. Dev Biol. 1967 Sep;16(3):250–281. doi: 10.1016/0012-1606(67)90026-7. [DOI] [PubMed] [Google Scholar]
  21. Rasmussen H. Cell communication, calcium ion, and cyclic adenosine monophosphate. Science. 1970 Oct 23;170(3956):404–412. doi: 10.1126/science.170.3956.404. [DOI] [PubMed] [Google Scholar]
  22. Roseman S. The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion. Chem Phys Lipids. 1970 Oct;5(1):270–297. doi: 10.1016/0009-3084(70)90024-1. [DOI] [PubMed] [Google Scholar]
  23. Roth S., McGuire E. J., Roseman S. Evidence for cell-surface glycosyltransferases. Their potential role in cellular recognition. J Cell Biol. 1971 Nov;51(21):536–547. doi: 10.1083/jcb.51.2.536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schacter L. P. Effect of conditioned media on differentiation in mass cultures of chick limb bud cells. II. Metabolic and biochemical effects. Exp Cell Res. 1970 Nov;63(1):33–42. doi: 10.1016/0014-4827(70)90328-9. [DOI] [PubMed] [Google Scholar]
  25. Shulman H. J., Meyer K. Cellular differentiation and the aging process in cartilaginous tissues. Mucopolysaccharide synthesis in cell cultures of chondrocytes. J Exp Med. 1968 Dec 1;128(6):1353–1362. doi: 10.1084/jem.128.6.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Shulman H. J., Meyer K. Protein-polyaccharide of chicken cartilage and chondrocyte cell cultures. Biochem J. 1970 Dec;120(4):689–697. doi: 10.1042/bj1200689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Toole B. P., Gross J. The extracellular matrix of the regenerating newt limb: synthesis and removal of hyaluronate prior to differentiation. Dev Biol. 1971 May;25(1):57–77. doi: 10.1016/0012-1606(71)90019-4. [DOI] [PubMed] [Google Scholar]
  28. Toole B. P., Trelstad R. L. Hyaluronate production and removal during corneal development in the chick. Dev Biol. 1971 Sep;26(1):28–35. doi: 10.1016/0012-1606(71)90104-7. [DOI] [PubMed] [Google Scholar]
  29. Trelstad R. L., Kang A. H., Igarashi S., Gross J. Isolation of two distinct collagens from chick cartilage. Biochemistry. 1970 Dec 8;9(25):4993–4998. doi: 10.1021/bi00827a025. [DOI] [PubMed] [Google Scholar]
  30. Vasiliev J. M., Gelfand I. M., Guelstein V. I., Fetisova E. K. Stimulation of DNA synthesis in cultures of mouse embryo fibroblast-like cells. J Cell Physiol. 1970 Jun;75(3):305–313. doi: 10.1002/jcp.1040750307. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES