Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1972 Jun;69(6):1508–1513. doi: 10.1073/pnas.69.6.1508

Measurement of Transmembrane Potentials in Phospholipid Vesicles

Roger D Kornberg 1,*, Mark G McNamee 1, Harden M McConnell 1,
PMCID: PMC426737  PMID: 4338594

Abstract

Phosphatidylcholine vesicles are permeable to tempotartrate, a spin-label derivative of tartaric acid. The inside-outside distribution of tempotartrate is coupled to the inside-outside distribution of H+, so it must be a measure of the transmembrane electrical potential difference in vesicles permeable to H+. This prediction is borne out by the finding that the inside-outside distribution of tempotartrate is the reciprocal of the inside-outside distribution of K+ in vesicles prepared in the presence of valinomycin.

The inside-outside distribution of tempotartrate is, by contrast, equal to the inside-outside distribution of Cl- in vesicles without valinomycin. This is evidence that an inside-outside Cl- concentration gradient induces an H+ gradient, which must be due to HCl permeation.

Keywords: spin labels, valinomycin

Full text

PDF
1512

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ATTWOOD D., SAUNDEES L. A LIGHT-SCATTERING STUDY OF ULTRASONICALLY IRRADIATED LECITHIN SOLS. Biochim Biophys Acta. 1965 Apr 5;98:344–350. doi: 10.1016/0005-2760(65)90126-8. [DOI] [PubMed] [Google Scholar]
  2. Huang C. Studies on phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry. 1969 Jan;8(1):344–352. doi: 10.1021/bi00829a048. [DOI] [PubMed] [Google Scholar]
  3. Johnson S. M., Bangham A. D. Potassium permeability of single compartment liposomes with and without valinomycin. Biochim Biophys Acta. 1969 Oct 14;193(1):82–91. doi: 10.1016/0005-2736(69)90061-3. [DOI] [PubMed] [Google Scholar]
  4. Kornberg R. D., McConnell H. M. Inside-outside transitions of phospholipids in vesicle membranes. Biochemistry. 1971 Mar 30;10(7):1111–1120. doi: 10.1021/bi00783a003. [DOI] [PubMed] [Google Scholar]
  5. Kornberg R. D., McConnell H. M. Lateral diffusion of phospholipids in a vesicle membrane. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2564–2568. doi: 10.1073/pnas.68.10.2564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. McClare C. W. An accurate and convenient organic phosphorus assay. Anal Biochem. 1971 Feb;39(2):527–530. doi: 10.1016/0003-2697(71)90443-x. [DOI] [PubMed] [Google Scholar]
  7. Mitchell P., Moyle J. Acid-base titration across the membrane system of rat-liver mitochondria. Catalysis by uncouplers. Biochem J. 1967 Aug;104(2):588–600. doi: 10.1042/bj1040588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Pagano R., Thompson T. E. Spherical lipid bilayer membranes: electrical and isotopic studies of ion permeability. J Mol Biol. 1968 Nov 28;38(1):41–57. doi: 10.1016/0022-2836(68)90127-7. [DOI] [PubMed] [Google Scholar]
  9. Weiner H. Interaction of a spin-labeled analog of nicotinamide-adenine dinucleotide with alcohol dehydrogenase. I. Synthesis, kinetics, and electron paramagnetic resonance studies. Biochemistry. 1969 Feb;8(2):526–533. doi: 10.1021/bi00830a011. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES