Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1972 Aug;69(8):2203–2207. doi: 10.1073/pnas.69.8.2203

Negative Control of Protein Synthesis after Infection with Bacteriophage T7

Manfred Schweiger 1, Peter Herrlich 1, Eberhard Scherzinger 1, Hans J Rahmsdorf 1
PMCID: PMC426900  PMID: 4559598

Abstract

T7 phage induces two negative control mechanisms of protein synthesis: (a) Host-gene expression is repressed by a “T7 repressor,” and (b) early T7 protein synthesis is inhibited by a late phage protein.

(a) The repressor for host enzyme synthesis is an early T7 protein. Its gene is none of the known early genes; it is located promotor-proximal to gene 1. The repressor function of this protein can be demonstrated by DNA-dependent enzyme synthesis in vitro.

(b) Expression of early phage gene is depressed by a late phage protein or by T7 RNA polymerase. Control takes place on the level of transcription.

Keywords: E. coli, S-adenosyl methionine cleavage, T3 phage, RNA polymerase

Full text

PDF
2205

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brunovskis I., Summers W. C. The process of infection with coliphage T7. V. Shutoff of host RNA synthesis by an early phage function. Virology. 1971 Jul;45(1):224–231. doi: 10.1016/0042-6822(71)90129-2. [DOI] [PubMed] [Google Scholar]
  2. Burgess R. R. A new method for the large scale purification of Escherichia coli deoxyribonucleic acid-dependent ribonucleic acid polymerase. J Biol Chem. 1969 Nov 25;244(22):6160–6167. [PubMed] [Google Scholar]
  3. Chamberlin M., McGrath J., Waskell L. New RNA polymerase from Escherichia coli infected with bacteriophage T7. Nature. 1970 Oct 17;228(5268):227–231. doi: 10.1038/228227a0. [DOI] [PubMed] [Google Scholar]
  4. Godson G. N., Sinsheimer R. L. Lysis of Escherichia coli with a neutral detergent. Biochim Biophys Acta. 1967 Dec 19;149(2):476–488. doi: 10.1016/0005-2787(67)90175-x. [DOI] [PubMed] [Google Scholar]
  5. Herrlich P., Schweiger M. T3 and T7 bacteriophage deoxyribonucleic acid-directed enzyme synthesis in vitro. J Virol. 1970 Dec;6(6):750–753. doi: 10.1128/jvi.6.6.750-753.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Mahadik S. P., Dharmgrongartama B., Srinivasan P. R. An inhibitory protein of Escherichia coli RNA polymerase in bacteriophage T3-infected cells (core polymerase-sigma factor-host polymerase-phage polymerase-initiation). Proc Natl Acad Sci U S A. 1972 Jan;69(1):162–166. doi: 10.1073/pnas.69.1.162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Sauerbier W., Schweiger M., Herrlich P. Control of gene function in bacteriophage Tr. 3. Preventing the shutoff of early enzyme synthesis. J Virol. 1971 Nov;8(5):613–618. doi: 10.1128/jvi.8.5.613-618.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Scherzinger E., Herrlich P., Schweiger M., Schuster H. The early region of the DNA of bacteriophage T7. Eur J Biochem. 1972 Feb 15;25(2):341–348. doi: 10.1111/j.1432-1033.1972.tb01702.x. [DOI] [PubMed] [Google Scholar]
  9. Schweiger M., Herrlich P., Millette R. L. Gene expression in vitro from deoxyribonucleic acid of bacteriophage T7. J Biol Chem. 1971 Nov 25;246(22):6707–6712. [PubMed] [Google Scholar]
  10. Studier F. W. The genetics and physiology of bacteriophage T7. Virology. 1969 Nov;39(3):562–574. doi: 10.1016/0042-6822(69)90104-4. [DOI] [PubMed] [Google Scholar]
  11. Young E. T., 2nd, van Houwe G. Control of synthesis of glucosyl transferase and lysozyme messengers after T4 infection. J Mol Biol. 1970 Aug;51(3):605–619. doi: 10.1016/0022-2836(70)90011-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES