Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1972 Sep;69(9):2451–2455. doi: 10.1073/pnas.69.9.2451

Polypeptide Chain Initiation and Stepwise Elongation with Artemia Ribosomes and Factors*

Ralph P McCroskey 1, Michael Zasloff 1, Severo Ochoa 1
PMCID: PMC426963  PMID: 4560686

Abstract

The supernatant initiation factor from Artemia salina embryos promotes, besides the AUG-dependent binding of fMet-tRNAf, the poly(U)-dependent binding of N-acetylPhe-tRNA to 40S ribosomal subunits; the bound N-acylaminoacyl-tRNA reacts directly with puromycin upon addition of 60S subunits. Both the binding reaction and the synthesis of N-acylaminoacyl-puromycin occur in the absence of GTP or other ribonucleoside triphosphates. To a smaller extent, the factor also mediates the 40S ribosomal binding of Met-tRNAf and Phe-tRNA; in this case, the bound aminoacyl-tRNA is less reactive with puromycin. After the poly(U)- and supernatant factor-dependent binding of N-acetylPhe-tRNA to 40S subunits at low Mg2+ concentration, binding of a second aminoacyl-tRNA (Phe-tRNA), with ensuing formation of the first peptide bond, is dependent upon the addition of the 60S subunit, elongation factor EF-1, and GTP. Further growth of the polypeptide chain requires translocation and is, therefore, dependent upon the addition of elongation factor EF-2. As with the Escherichia coli system, once requirements for translation of the third codon have been met, no further additions are necessary for elongation of a peptide chain.

Keywords: Artemia salina, embryos, cysts, brine-shrimp eggs, poly(U)

Full text

PDF
2454

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ciferri O., Parisi B., Perani A., Grandi M. Different specificity of yeast transfer enzymes for Escherichia coli ribosomes. J Mol Biol. 1968 Nov 14;37(3):529–533. doi: 10.1016/0022-2836(68)90121-6. [DOI] [PubMed] [Google Scholar]
  2. Crystal R. G., Anderson W. F. Initiation of hemoglobin synthesis: comparison of model reactions that use artificial templates with those using natural messenger RNA. Proc Natl Acad Sci U S A. 1972 Mar;69(3):706–711. doi: 10.1073/pnas.69.3.706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Erbe R. W., Leder P. Initiation and protein synthesis: translation of di- and tri-codon messengers. Biochem Biophys Res Commun. 1968 Jun 10;31(5):798–803. doi: 10.1016/0006-291x(68)90633-5. [DOI] [PubMed] [Google Scholar]
  4. Erbe R. W., Nau M. M., Leder P. Translation and translocation of defined RNA messengers. J Mol Biol. 1969 Feb 14;39(3):441–460. doi: 10.1016/0022-2836(69)90137-5. [DOI] [PubMed] [Google Scholar]
  5. Gasior E., Moldave K. Evidence for a soluble protein factor specific for the interaction between aminoacylated transfer RNA's and the 40 s subunit of mammalian ribosomes. J Mol Biol. 1972 May 28;66(3):391–402. doi: 10.1016/0022-2836(72)90422-6. [DOI] [PubMed] [Google Scholar]
  6. Gasior E., Rao P., Moldave K. The interaction of aminoacyl-tRNA and N-acylaminoacyl-tRNA with ribosomes and ribosomal subunits. Biochim Biophys Acta. 1971 Dec 16;254(2):331–340. doi: 10.1016/0005-2787(71)90841-0. [DOI] [PubMed] [Google Scholar]
  7. Goldstein J. L., Beaudet A. L., Caskey C. T. Peptide chain termination with mammalian release factor. Proc Natl Acad Sci U S A. 1970 Sep;67(1):99–106. doi: 10.1073/pnas.67.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Haenni A. L., Chapeville F. The behaviour of acetylphenylalanyl soluble ribonucleic acid in polyphenylalanine synthesis. Biochim Biophys Acta. 1966 Jan 18;114(1):135–148. doi: 10.1016/0005-2787(66)90261-9. [DOI] [PubMed] [Google Scholar]
  9. Haenni A. L., Lucas-Lenard J. Stepwise synthesis of a tripeptide. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1363–1369. doi: 10.1073/pnas.61.4.1363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Krisko I., Gordon J., Lipmann F. Studies on the interchangeability of one of the mammalian and bacterial supernatant factors in protein biosynthesis. J Biol Chem. 1969 Nov 25;244(22):6117–6123. [PubMed] [Google Scholar]
  11. Leader D. P., Klein-Bremhaar H., Wool I. G. Distribution of initiation factors in cell fractions from mammalian tissues. Biochem Biophys Res Commun. 1972 Jan 14;46(1):215–224. doi: 10.1016/0006-291x(72)90652-3. [DOI] [PubMed] [Google Scholar]
  12. Leader D. P., Wool I. G. Partial purification and characterization of an initiation factor from rat liver which promotes the binding of phenylalanyl-tRNA to 40 -S ribosomal subunits. Biochim Biophys Acta. 1972 Mar 24;262(3):360–370. doi: 10.1016/0005-2787(72)90274-2. [DOI] [PubMed] [Google Scholar]
  13. Leder P., Nau M. M. Initiation of protein synthesis. 3. Factor-GTP-codon-dependent binding of F-met-tRNA to ribosomes. Proc Natl Acad Sci U S A. 1967 Aug;58(2):774–781. doi: 10.1073/pnas.58.2.774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Leis J. P., Keller E. B. Protein chain initiation by methionyl-tRNA. Biochem Biophys Res Commun. 1970 Jul 27;40(2):416–421. doi: 10.1016/0006-291x(70)91025-9. [DOI] [PubMed] [Google Scholar]
  15. Lucas-Lenard J., Lipmann F. Initiation of polyphenylalanine synthesis by N-acetylphenylalanyl-SRNA. Proc Natl Acad Sci U S A. 1967 Apr;57(4):1050–1057. doi: 10.1073/pnas.57.4.1050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lucas-Lenard J. Protein biosynthesis. Annu Rev Biochem. 1971;40:409–448. doi: 10.1146/annurev.bi.40.070171.002205. [DOI] [PubMed] [Google Scholar]
  17. Marcus A. Tobacco mosaic virus ribonucleic acid-dependent amino acid incorporation in a wheat embryo system in vitro. Formation of a ribosome-messenger "initiation" complex. J Biol Chem. 1970 Mar 10;245(5):962–966. [PubMed] [Google Scholar]
  18. Monro R. E., Cerná J., Marcker K. A. Ribosome-catalyzed peptidyl transfer: substrate specificity at the P-site. Proc Natl Acad Sci U S A. 1968 Nov;61(3):1042–1049. doi: 10.1073/pnas.61.3.1042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ravel J. M., Shorey R. L., Garner C. W., Dawkins R. C., Shive W. The role of an aminoacyl-tRNA-GTP-protein complex in polypeptide synthesis. Cold Spring Harb Symp Quant Biol. 1969;34:321–330. doi: 10.1101/sqb.1969.034.01.039. [DOI] [PubMed] [Google Scholar]
  20. Shafritz D. A., Laycock D. G., Crystal R. G., Anderson W. F. Requirement for GTP in the initiation process on reticulocyte ribosomes and ribosomal subunits. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2246–2251. doi: 10.1073/pnas.68.9.2246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shafritz D. A., Prichard P. M., Gilbert J. M., Merrick W. C., Anderson W. F. Separation of reticulocyte initiation factor M 2 activity into two components. Proc Natl Acad Sci U S A. 1972 Apr;69(4):983–987. doi: 10.1073/pnas.69.4.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Vazquez D., Battaner E., Neth R., Heller G., Monro R. E. The function of 80 S ribosomal subunits and effects of some antibiotics. Cold Spring Harb Symp Quant Biol. 1969;34:369–375. doi: 10.1101/sqb.1969.034.01.043. [DOI] [PubMed] [Google Scholar]
  23. Zasloff M., Ochoa S. A supernatant factor involved in initiation complex formation with eukaryotic ribosomes. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3059–3063. doi: 10.1073/pnas.68.12.3059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zasloff M., Ochoa S. Polypeptide chain initiation in eukaryotes: functional identity of supernatant factor from various sources. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1796–1799. doi: 10.1073/pnas.69.7.1796. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES