Abstract
Stromal cell lines were established from canine long-term marrow cultures, cloned by limiting dilution, and maintained in stromal cell-conditioned medium. These cells grew adherent, maintained stable growth rate and morphology under standard conditions (in 20-30% conditioned medium; confluency, 70-90%), and supported hemopoiesis in long-term marrow cultures. In the presence of exogenous recombinant canine stem cell factor (rcSCF), round cells developed from the adherent layer, detached, and remained in culture as viable floating cells. Round floating cells also appeared when cultures were grown to > 90% confluency without rcSCF. Round cells were smaller than adherent cells, expressed CD34, showed basophilic plasma, and stained positive for c-kit, MHC-class II markers, and myeloid markers. In standard assays for colony formation, the detached cells produced granulocyte-macrophage colony-forming units (CFU-GM), fibroblast colony-forming units (CFU-F), and less well-defined colony-forming units. In addition, on allogeneic feeder cells in long-term cultures, these cells generated hemopoietic colonies. Strikingly, the differentiation was reversible: when nonadherent cells were resuspended at lower density in serum-containing medium, they reattached and grew to confluence when, once again, round cells detached. Detached cells from this secondary cycle produced mainly CFU-F and few CFU-GM when placed in clonal assays. These results suggest that some fibroblast-like stromal cells have the potential to differentiate into cells with hemopoietic characteristics. These observations provide evidence for the existence of a quiescent precursor of hemopoietic progenitors in the bone marrow stroma of the adult dog.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Accolla R. S., Birnbaum D., Pierres M. The importance of cross-reactions between species: mouse allo-anti-Ia monoclonal antibodies as a powerful tool to define human Ia subsets. Hum Immunol. 1983 Sep;8(1):75–82. doi: 10.1016/0198-8859(83)90084-8. [DOI] [PubMed] [Google Scholar]
- Anklesaria P., Kase K., Glowacki J., Holland C. A., Sakakeeny M. A., Wright J. A., FitzGerald T. J., Lee C. Y., Greenberger J. S. Engraftment of a clonal bone marrow stromal cell line in vivo stimulates hematopoietic recovery from total body irradiation. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7681–7685. doi: 10.1073/pnas.84.21.7681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baum C. M., Weissman I. L., Tsukamoto A. S., Buckle A. M., Peault B. Isolation of a candidate human hematopoietic stem-cell population. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2804–2808. doi: 10.1073/pnas.89.7.2804. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Broudy V. C., Lin N., Zsebo K. M., Birkett N. C., Smith K. A., Bernstein I. D., Papayannopoulou T. Isolation and characterization of a monoclonal antibody that recognizes the human c-kit receptor. Blood. 1992 Jan 15;79(2):338–346. [PubMed] [Google Scholar]
- Castro-Malaspina H., Gay R. E., Resnick G., Kapoor N., Meyers P., Chiarieri D., McKenzie S., Broxmeyer H. E., Moore M. A. Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny. Blood. 1980 Aug;56(2):289–301. [PubMed] [Google Scholar]
- Dexter T. M., Allen T. D., Lajtha L. G. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol. 1977 Jun;91(3):335–344. doi: 10.1002/jcp.1040910303. [DOI] [PubMed] [Google Scholar]
- Dorshkind K. Regulation of hemopoiesis by bone marrow stromal cells and their products. Annu Rev Immunol. 1990;8:111–137. doi: 10.1146/annurev.iy.08.040190.000551. [DOI] [PubMed] [Google Scholar]
- Eaves C. J., Cashman J. D., Kay R. J., Dougherty G. J., Otsuka T., Gaboury L. A., Hogge D. E., Lansdorp P. M., Eaves A. C., Humphries R. K. Mechanisms that regulate the cell cycle status of very primitive hematopoietic cells in long-term human marrow cultures. II. Analysis of positive and negative regulators produced by stromal cells within the adherent layer. Blood. 1991 Jul 1;78(1):110–117. [PubMed] [Google Scholar]
- FORD C. E., HAMERTON J. L., BARNES D. W., LOUTIT J. F. Cytological identification of radiation-chimaeras. Nature. 1956 Mar 10;177(4506):452–454. doi: 10.1038/177452a0. [DOI] [PubMed] [Google Scholar]
- Godin I., Deed R., Cooke J., Zsebo K., Dexter M., Wylie C. C. Effects of the steel gene product on mouse primordial germ cells in culture. Nature. 1991 Aug 29;352(6338):807–809. doi: 10.1038/352807a0. [DOI] [PubMed] [Google Scholar]
- Huang H., Zettergren L. D., Auerbach R. In vitro differentiation of B cells and myeloid cells from the early mouse embryo and its extraembryonic yolk sac. Exp Hematol. 1994 Jan;22(1):19–25. [PubMed] [Google Scholar]
- Huang S., Terstappen L. W. Formation of haematopoietic microenvironment and haematopoietic stem cells from single human bone marrow stem cells. Nature. 1992 Dec 24;360(6406):745–749. doi: 10.1038/360745a0. [DOI] [PubMed] [Google Scholar]
- Huang S., Terstappen L. W. Formation of haematopoietic microenvironment and haematopoietic stem cells from single human bone marrow stem cells. Nature. 1994 Apr 14;368(6472):664–664. doi: 10.1038/368664a0. [DOI] [PubMed] [Google Scholar]
- Jones-Villeneuve E., Phillips R. A. Potentials for lymphoid differentiation by cells from long term cultures of bone marrow. Exp Hematol. 1980 Jan;8(1):65–76. [PubMed] [Google Scholar]
- Keating A., Singer J. W., Killen P. D., Striker G. E., Salo A. C., Sanders J., Thomas E. D., Thorning D., Fialkow P. J. Donor origin of the in vitro haematopoietic microenvironment after marrow transplantation in man. Nature. 1982 Jul 15;298(5871):280–283. doi: 10.1038/298280a0. [DOI] [PubMed] [Google Scholar]
- Kittler E. L., McGrath H., Temeles D., Crittenden R. B., Kister V. K., Quesenberry P. J. Biologic significance of constitutive and subliminal growth factor production by bone marrow stroma. Blood. 1992 Jun 15;79(12):3168–3178. [PubMed] [Google Scholar]
- Matsui Y., Toksoz D., Nishikawa S., Nishikawa S., Williams D., Zsebo K., Hogan B. L. Effect of Steel factor and leukaemia inhibitory factor on murine primordial germ cells in culture. Nature. 1991 Oct 24;353(6346):750–752. doi: 10.1038/353750a0. [DOI] [PubMed] [Google Scholar]
- Nishikawa S., Kina T., Amagai T., Katsura Y. Early B cell precursors in long-term bone marrow culture: selective development in the bone marrow of irradiated recipients. Eur J Immunol. 1985 Jul;15(7):696–701. doi: 10.1002/eji.1830150711. [DOI] [PubMed] [Google Scholar]
- Radka S. F., Charron D. J., Brodsky F. M. Class II molecules of the major histocompatibility complex considered as differentiation markers. Hum Immunol. 1986 Aug;16(4):390–400. doi: 10.1016/0198-8859(86)90065-0. [DOI] [PubMed] [Google Scholar]
- Rogers J. A., Berman J. W. A tumor necrosis factor-responsive long-term-culture-initiating cell is associated with the stromal layer of mouse long-term bone marrow cultures. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5777–5780. doi: 10.1073/pnas.90.12.5777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sandmaier B. M., Schuening F. G., Bianco J. A., Rosenman S. J., Bernstein I., Goehle S., Storb R., Appelbaum F. R. Biochemical characterization of a unique canine myeloid antigen. Leukemia. 1991 Feb;5(2):125–130. [PubMed] [Google Scholar]
- Sandmaier B. M., Storb R., Appelbaum F. R., Gallatin W. M. An antibody that facilitates hematopoietic engraftment recognizes CD44. Blood. 1990 Aug 1;76(3):630–635. [PubMed] [Google Scholar]
- Schrader J. W., Schrader S. In vitro studies on lymphocyte differentiation. I. Long term in vitro culture of cells giving rise to functional lymphocytes in irradiated mice. J Exp Med. 1978 Sep 1;148(3):823–828. doi: 10.1084/jem.148.3.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schuening F. G., Storb R., Meyer J., Goehle S. Long-term culture of canine bone marrow cells. Exp Hematol. 1989 Jun;17(5):411–417. [PubMed] [Google Scholar]
- Simmons P. J., Przepiorka D., Thomas E. D., Torok-Storb B. Host origin of marrow stromal cells following allogeneic bone marrow transplantation. 1987 Jul 30-Aug 5Nature. 328(6129):429–432. doi: 10.1038/328429a0. [DOI] [PubMed] [Google Scholar]
- Simmons P. J., Torok-Storb B. CD34 expression by stromal precursors in normal human adult bone marrow. Blood. 1991 Dec 1;78(11):2848–2853. [PubMed] [Google Scholar]
- Singer J. W., Charbord P., Keating A., Nemunaitis J., Raugi G., Wight T. N., Lopez J. A., Roth G. J., Dow L. W., Fialkow P. J. Simian virus 40-transformed adherent cells from human long-term marrow cultures: cloned cell lines produce cells with stromal and hematopoietic characteristics. Blood. 1987 Aug;70(2):464–474. [PubMed] [Google Scholar]
- Singer J. W., Keating A., Cuttner J., Gown A. M., Jacobson R., Killen P. D., Moohr J. W., Najfeld V., Powell J., Sanders J. Evidence for a stem cell common to hematopoiesis and its in vitro microenvironment: studies of patients with clonal hematopoietic neoplasia. Leuk Res. 1984;8(4):535–545. doi: 10.1016/0145-2126(84)90002-x. [DOI] [PubMed] [Google Scholar]
- THOMAS E. D., FLIEDNER T. M., THOMAS D., CRONKITE E. P. THE PROBLEM OF THE STEM CELL: OBSERVATIONS IN DOGS FOLLOWING NITROGEN MUSTARD. J Lab Clin Med. 1965 May;65:794–803. [PubMed] [Google Scholar]
- TILL J. E., McCULLOCH E. A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961 Feb;14:213–222. [PubMed] [Google Scholar]
- Tavassoli M. Embryonic and fetal hemopoiesis: an overview. Blood Cells. 1991;17(2):269–286. [PubMed] [Google Scholar]
- Tavassoli M., Friedenstein A. Hemopoietic stromal microenvironment. Am J Hematol. 1983 Sep;15(2):195–203. doi: 10.1002/ajh.2830150211. [DOI] [PubMed] [Google Scholar]
- Toksoz D., Zsebo K. M., Smith K. A., Hu S., Brankow D., Suggs S. V., Martin F. H., Williams D. A. Support of human hematopoiesis in long-term bone marrow cultures by murine stromal cells selectively expressing the membrane-bound and secreted forms of the human homolog of the steel gene product, stem cell factor. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7350–7354. doi: 10.1073/pnas.89.16.7350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Visser J. W., Van Bekkum D. W. Purification of pluripotent hemopoietic stem cells: past and present. Exp Hematol. 1990 Mar;18(3):248–256. [PubMed] [Google Scholar]
- Whitlock C. A., Witte O. N. Long-term culture of B lymphocytes and their precursors from murine bone marrow. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3608–3612. doi: 10.1073/pnas.79.11.3608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zanjani E. D., Ascensao J. L., Tavassoli M. Homing of liver-derived hemopoietic stem cells to fetal bone marrow. Trans Assoc Am Physicians. 1992;105:7–14. [PubMed] [Google Scholar]
- Zanjani E. D., Ascensao J. L., Tavassoli M. Liver-derived fetal hematopoietic stem cells selectively and preferentially home to the fetal bone marrow. Blood. 1993 Jan 15;81(2):399–404. [PubMed] [Google Scholar]