Abstract
Long-term bone marrow cultures provide a model for the study of hematopoiesis. Both an intact, adherent stromal layer and hematopoietic stem cells are necessary components in these cultures. Mycophenolic acid treatment of mouse long-term bone marrow cultures depletes them of all assayable hematopoietic precursors. The residual stromal cells are functional and support hematopoiesis if new progenitor cells are supplied. We now show that these mycophenolic acid-treated stromal cell cultures contain cells capable of hematopoietic differentiation without the addition of new progenitors. When treated with tumor necrosis factor alpha (20-200 units/ml), the apparently pure stromal cultures undergo an intense burst of hematopoietic activity. After 4 days such cultures contain approximately 2 x 10(6) hematopoietic cells and, by 1 week, they are indistinguishable from control long-term cultures that were not treated with mycophenolic acid. These results suggest that the stromal cultures either contain hematopoietic stem cells that are maintained quiescent and mycophenolic acid-resistant, perhaps by intimate contact with the stroma, or contain adherent cells that can be induced to differentiate into hematopoietic stem cells. These stem cells are primitive, in that they are capable of multilineage development in the long-term cultures, but are unable to form spleen colonies or myeloid colonies in semisolid medium. These data demonstrate that the adherent fraction of cultured bone marrow contains very primitive hematopoietic cells and that tumor necrosis factor alpha activates their proliferation and differentiation. They also suggest a strategy for obtaining the earliest progenitors free of other, more mature cell types.
Full text
PDF



Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anklesaria P., Greenberger J. S., Fitzgerald T. J., Sullenbarger B., Wicha M., Campbell A. Hemonectin mediates adhesion of engrafted murine progenitors to a clonal bone marrow stromal cell line from Sl/Sld mice. Blood. 1991 Apr 15;77(8):1691–1698. [PubMed] [Google Scholar]
- Austin P. E., McCulloch E. A., Till J. E. Characterization of the factor in L-cell conditioned medium capable of stimulating colony formation by mouse marrow cells in culture. J Cell Physiol. 1971 Apr;77(2):121–134. doi: 10.1002/jcp.1040770202. [DOI] [PubMed] [Google Scholar]
- Bartelmez S. H., Bradley T. R., Bertoncello I., Mochizuki D. Y., Tushinski R. J., Stanley E. R., Hapel A. J., Young I. G., Kriegler A. B., Hodgson G. S. Interleukin 1 plus interleukin 3 plus colony-stimulating factor 1 are essential for clonal proliferation of primitive myeloid bone marrow cells. Exp Hematol. 1989 Mar;17(3):240–245. [PubMed] [Google Scholar]
- Berman J. W., Basch R. S. Thy-1 antigen expression by murine hematopoietic precursor cells. Exp Hematol. 1985 Dec;13(11):1152–1156. [PubMed] [Google Scholar]
- Cass C. E., Lowe J. K., Manchak J. M., Henderson J. F. Biological effects of inhibition of guanine nucleotide synthesis by mycophenolic acid in cultured neuroblastoma cells. Cancer Res. 1977 Sep;37(9):3314–3320. [PubMed] [Google Scholar]
- Dexter T. M., Allen T. D., Lajtha L. G. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol. 1977 Jun;91(3):335–344. doi: 10.1002/jcp.1040910303. [DOI] [PubMed] [Google Scholar]
- Dorshkind K., Johnson A., Collins L., Keller G. M., Phillips R. A. Generation of purified stromal cell cultures that support lymphoid and myeloid precursors. J Immunol Methods. 1986 May 1;89(1):37–47. doi: 10.1016/0022-1759(86)90029-3. [DOI] [PubMed] [Google Scholar]
- Dorshkind K., Phillips R. A. Maturational state of lymphoid cells in long-term bone marrow cultures. J Immunol. 1982 Dec;129(6):2444–2450. [PubMed] [Google Scholar]
- Eaves C. J., Sutherland H. J., Cashman J. D., Otsuka T., Lansdorp P. M., Humphries R. K., Eaves A. C., Hogge D. E. Regulation of primitive human hematopoietic cells in long-term marrow culture. Semin Hematol. 1991 Apr;28(2):126–131. [PubMed] [Google Scholar]
- Gordon M. Y., Riley G. P., Greaves M. F. Plastic-adherent progenitor cells in human bone marrow. Exp Hematol. 1987 Aug;15(7):772–778. [PubMed] [Google Scholar]
- Harrison D. E., Astle C. M., Lerner C. Number and continuous proliferative pattern of transplanted primitive immunohematopoietic stem cells. Proc Natl Acad Sci U S A. 1988 Feb;85(3):822–826. doi: 10.1073/pnas.85.3.822. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harrison D. E. Competitive repopulation: a new assay for long-term stem cell functional capacity. Blood. 1980 Jan;55(1):77–81. [PubMed] [Google Scholar]
- Harrison D. E., Lerner C. P. Most primitive hematopoietic stem cells are stimulated to cycle rapidly after treatment with 5-fluorouracil. Blood. 1991 Sep 1;78(5):1237–1240. [PubMed] [Google Scholar]
- Hodgson G. S., Bradley T. R. Properties of haematopoietic stem cells surviving 5-fluorouracil treatment: evidence for a pre-CFU-S cell? Nature. 1979 Oct 4;281(5730):381–382. doi: 10.1038/281381a0. [DOI] [PubMed] [Google Scholar]
- Huang S., Terstappen L. W. Formation of haematopoietic microenvironment and haematopoietic stem cells from single human bone marrow stem cells. Nature. 1992 Dec 24;360(6406):745–749. doi: 10.1038/360745a0. [DOI] [PubMed] [Google Scholar]
- Jones R. J., Wagner J. E., Celano P., Zicha M. S., Sharkis S. J. Separation of pluripotent haematopoietic stem cells from spleen colony-forming cells. Nature. 1990 Sep 13;347(6289):188–189. doi: 10.1038/347188a0. [DOI] [PubMed] [Google Scholar]
- Kerk D. K., Henry E. A., Eaves A. C., Eaves C. J. Two classes of primitive pluripotent hemopoietic progenitor cells: separation by adherence. J Cell Physiol. 1985 Oct;125(1):127–134. doi: 10.1002/jcp.1041250117. [DOI] [PubMed] [Google Scholar]
- Lerner C., Harrison D. E. 5-Fluorouracil spares hemopoietic stem cells responsible for long-term repopulation. Exp Hematol. 1990 Feb;18(2):114–118. [PubMed] [Google Scholar]
- Mauch P., Greenberger J. S., Botnick L., Hannon E., Hellman S. Evidence for structured variation in self-renewal capacity within long-term bone marrow cultures. Proc Natl Acad Sci U S A. 1980 May;77(5):2927–2930. doi: 10.1073/pnas.77.5.2927. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McNiece I. K., Bertoncello I., Kriegler A. B., Quesenberry P. J. Colony-forming cells with high proliferative potential (HPP-CFC). Int J Cell Cloning. 1990 May;8(3):146–160. doi: 10.1002/stem.5530080302. [DOI] [PubMed] [Google Scholar]
- Neta R., Oppenheim J. J. Cytokines in therapy of radiation injury. Blood. 1988 Sep;72(3):1093–1095. [PubMed] [Google Scholar]
- Slørdal L., Warren D. J., Moore M. A. Effect of recombinant murine tumor necrosis factor on hemopoietic reconstitution in sublethally irradiated mice. J Immunol. 1989 Feb 1;142(3):833–835. [PubMed] [Google Scholar]
- Slørdal L., Warren D. J., Moore M. A. Protective effects of tumor necrosis factor on murine hematopoiesis during cycle-specific cytotoxic chemotherapy. Cancer Res. 1990 Jul 15;50(14):4216–4220. [PubMed] [Google Scholar]
- Spangrude G. J., Heimfeld S., Weissman I. L. Purification and characterization of mouse hematopoietic stem cells. Science. 1988 Jul 1;241(4861):58–62. doi: 10.1126/science.2898810. [DOI] [PubMed] [Google Scholar]
- Spangrude G. J. Hematopoietic stem-cell differentiation. Curr Opin Immunol. 1991 Apr;3(2):171–178. doi: 10.1016/0952-7915(91)90046-4. [DOI] [PubMed] [Google Scholar]
- Sutherland H. J., Eaves C. J., Eaves A. C., Dragowska W., Lansdorp P. M. Characterization and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro. Blood. 1989 Oct;74(5):1563–1570. [PubMed] [Google Scholar]
- Szilvassy S. J., Humphries R. K., Lansdorp P. M., Eaves A. C., Eaves C. J. Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8736–8740. doi: 10.1073/pnas.87.22.8736. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warren D. J., Slørdal L., Moore M. A. Tumor-necrosis factor induces cell cycle arrest in multipotential hematopoietic stem cells: a possible radioprotective mechanism. Eur J Haematol. 1990 Sep;45(3):158–163. doi: 10.1111/j.1600-0609.1990.tb00444.x. [DOI] [PubMed] [Google Scholar]