Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1972 Sep;69(9):2609–2613. doi: 10.1073/pnas.69.9.2609

Mechanism of DNA Replication by Highly Purified DNA Polymerase of Chicken Embryo*

Jannis G Stavrianopoulos 1, John D Karkas 1, Erwin Chargaff 1
PMCID: PMC426999  PMID: 4506782

Abstract

Highly purified DNA polymerase of chicken embryo was used to investigate the mechanism of DNA replication. The templates used included synthetic homopolymer pairs, as well as DNA of bacteriophage f1 and DNA-RNA hybrids prepared by partial or complete transcription of f1 DNA. The evidence suggests that the DNA synthesized is complementary either to the DNA or the RNA strand of the hybrid, depending on the relative lengths of the two strands, with the longer serving as the template and the shorter as the primer. While f1 DNA itself lacks template properties, the f1 DNA-RNA hybrids are efficient templates; and composition studies show the DNA synthesized to be complementary to the DNA strand of the hybrid. These observations suggest a mechanism of DNA replication in which the initial synthesis of a stable primer by RNA polymerase plays a pivotal role.

Keywords: bacteriophage f1, DNA-RNA hybrids, RNA polymerase

Full text

PDF
2610

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baltimore D., Smoler D. Primer requirement and template specificity of the DNA polymerase of RNA tumor viruses. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1507–1511. doi: 10.1073/pnas.68.7.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brutlag D., Schekman R., Kornberg A. A possible role for RNA polymerase in the initiation of M13 DNA synthesis. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2826–2829. doi: 10.1073/pnas.68.11.2826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chamberlin M. J. Comparative properties of DNA, RNA, and hybrid homopolymer pairs. Fed Proc. 1965 Nov-Dec;24(6):1446–1457. [PubMed] [Google Scholar]
  4. Hausen P., Stein H. Ribonuclease H. An enzyme degrading the RNA moiety of DNA-RNA hybrids. Eur J Biochem. 1970 Jun;14(2):278–283. doi: 10.1111/j.1432-1033.1970.tb00287.x. [DOI] [PubMed] [Google Scholar]
  5. Jovin T. M., Englund P. T., Bertsch L. L. Enzymatic synthesis of deoxyribonucleic acid. XXVI. Physical and chemical studies of a homogeneous deoxyribonucleic acid polymerase. J Biol Chem. 1969 Jun 10;244(11):2996–3008. [PubMed] [Google Scholar]
  6. Karkas J. D. Coupling of replication to transcription in vitro. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2288–2291. doi: 10.1073/pnas.69.8.2288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Karkas J. D., Rudner R., Chargaff E. Template properties of complementary fractions of denatured microbial deoxyribonucleic acids. Proc Natl Acad Sci U S A. 1970 Apr;65(4):1049–1056. doi: 10.1073/pnas.65.4.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Karkas J. D., Stavrianopoulos J. G., Chargaff E. Action of DNA polymerase I of Escherichia coli with DNA-RNA hybrids as templates. Proc Natl Acad Sci U S A. 1972 Feb;69(2):398–402. doi: 10.1073/pnas.69.2.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lark K. G. Evidence for the direct involvement of RNA in the initiation of DNA replication in Escherichia coli 15T. J Mol Biol. 1972 Feb 28;64(1):47–60. doi: 10.1016/0022-2836(72)90320-8. [DOI] [PubMed] [Google Scholar]
  10. Marvin D. A., Hohn B. Filamentous bacterial viruses. Bacteriol Rev. 1969 Jun;33(2):172–209. doi: 10.1128/br.33.2.172-209.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. RICHARDSON C. C., SCHILDKRAUT C. L., APOSHIAN H. V., KORNBERG A. ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEIC ACID. XIV. FURTHER PURIFICATION AND PROPERTIES OF DEOXYRIBONUCLEIC ACID POLYMERASE OF ESCHERICHIA COLI. J Biol Chem. 1964 Jan;239:222–232. [PubMed] [Google Scholar]
  12. Richardson C. C. Enzymes in DNA metabolism. Annu Rev Biochem. 1969;38:795–840. doi: 10.1146/annurev.bi.38.070169.004051. [DOI] [PubMed] [Google Scholar]
  13. Robertson H. D. Enzymatic synthesis of bacteriophage fl DNA: RNA hybrid and double stranded RNA. Nat New Biol. 1971 Feb 10;229(6):169–172. doi: 10.1038/newbio229169a0. [DOI] [PubMed] [Google Scholar]
  14. Rudner R., Karkas J. D., Chargaff E. Separation of B. subtilis DNA into complementary strands. 3. Direct analysis. Proc Natl Acad Sci U S A. 1968 Jul;60(3):921–922. doi: 10.1073/pnas.60.3.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shishido K., Ikeda Y. Isolation of double-helical regions rich in adenine-thymine base pairing from bacteriophage f1 DNA. J Mol Biol. 1971 Jan 28;55(2):287–291. doi: 10.1016/0022-2836(71)90200-2. [DOI] [PubMed] [Google Scholar]
  16. Stavrianopoulos J. G., Karkas J. D., Chargaff E. DNA polymerase of chicken embryo: purification and properties. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1781–1785. doi: 10.1073/pnas.69.7.1781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Stavrianopoulos J. G., Karkas J. D., Chargaff E. Nucleic acid polymerases of the developing chicken embryo: a DNA polymerase preferring a hybrid template. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2207–2211. doi: 10.1073/pnas.68.9.2207. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES