Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Dec;70(12 Pt 1-2):3502–3505. doi: 10.1073/pnas.70.12.3502

Requirement of a Phage-Induced 5′-Exonuclease for the Expression of Late Genes of Bacteriophage T5

G Chinnadurai 1, D J McCorquodale 1
PMCID: PMC427268  PMID: 4357874

Abstract

Amber mutants of bacteriophage T5 defective in gene D15, which codes for a 5′-exonuclease, do not express late genes. Electrophoretic separation in sodium dodecyl sulfate-polyacrylamide gels of the proteins induced by this mutant in nonpermissive Escherichia coli show a virtual absence of late proteins. Synthesis of lysozyme and serum-blocking power is very low whereas the extent of synthesis of an early enzyme, deoxyribonucleoside monophosphokinase, is similar to that in wild-type infections. It is proposed that one requirement for the expression of late T5 genes is the introduction of gaps or nicks in the T5 DNA so that late transcription can occur.

Keywords: electrophoresis, transcription, “late protein” synthesis

Full text

PDF
3503

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beckman L. D., Hoffman M. S., McCorquodale D. J. Pre-early proteins of bacteriophage T5: structure and function. J Mol Biol. 1971 Dec 28;62(3):551–564. doi: 10.1016/0022-2836(71)90155-0. [DOI] [PubMed] [Google Scholar]
  2. Bolle A., Epstein R. H., Salser W., Geiduschek E. P. Transcription during bacteriophage T4 development: requirements for late messenger synthesis. J Mol Biol. 1968 Apr 28;33(2):339–362. doi: 10.1016/0022-2836(68)90193-9. [DOI] [PubMed] [Google Scholar]
  3. Bruner R., Cape R. E. The expression of two classes of late genes of bacteriophage T4. J Mol Biol. 1970 Oct 14;53(1):69–89. doi: 10.1016/0022-2836(70)90046-x. [DOI] [PubMed] [Google Scholar]
  4. Carrington J. M., Lunt M. R. Studies on the replication of bacteriophage T5. J Gen Virol. 1973 Feb;18(2):91–109. doi: 10.1099/0022-1317-18-2-91. [DOI] [PubMed] [Google Scholar]
  5. DE MARS R. I. The production of phage-related materials when bacteriophage development in interrupted by proflavine. Virology. 1955 May;1(1):83–99. doi: 10.1016/0042-6822(55)90007-6. [DOI] [PubMed] [Google Scholar]
  6. FESSLER L. I., KELEMEN M. V., BURTON K. Synthesis of protein in a purine-requiring Escherichia coli infected with bacteriophage T2. Biochem J. 1960 Dec;77:558–563. doi: 10.1042/bj0770558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fairbanks G., Jr, Levinthal C., Reeder R. H. Analysis of C14-labeled proteins by disc electrophoresis. Biochem Biophys Res Commun. 1965 Aug 16;20(4):393–399. doi: 10.1016/0006-291x(65)90589-9. [DOI] [PubMed] [Google Scholar]
  8. Frenkel G. D., Richardson C. C. The deoxyribonuclease induced after infection of Escherichia coli by bacteriophage T5. I. Characterization of the enzyme as a 5'-exonuclease. J Biol Chem. 1971 Aug 10;246(15):4839–4847. [PubMed] [Google Scholar]
  9. Frenkel G. D., Richardson C. C. The deoxyribonuclease induced after infection of Escherichia coli by bacteriophage T5. II. Role of the enzyme in replication of the pahge deoxyribonucleic acid. J Biol Chem. 1971 Aug 10;246(15):4848–4852. [PubMed] [Google Scholar]
  10. Hendrickson H. E., McCorquodale D. J. Genetic and physiological studies of bacteriophage T5. 2. The relationship between phage DNA synthesis and protein synthesis in T5-infected cells. Biochem Biophys Res Commun. 1971 May 21;43(4):735–740. doi: 10.1016/0006-291x(71)90677-2. [DOI] [PubMed] [Google Scholar]
  11. Hendrickson H. E., McCorquodale D. J. Genetic and physiological studies of bacteriophage T5. 3. Patterns of deoxyribonucleic acid synthesis induced by mutants of T5 and the identification of genes influencing the appearance of phage-induced dihydrofolate reductase and deoxyribonuclease. J Virol. 1972 Jun;9(6):981–989. doi: 10.1128/jvi.9.6.981-989.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hendrickson H. E., McCorquodale D. J. Genetic and physiological studies of bacteriophage t5 I. An expanded genetic map of t5. J Virol. 1971 May;7(5):612–618. doi: 10.1128/jvi.7.5.612-618.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hosoda J., Levinthal C. Protein synthesis by Escherichia coli infected with bacteriophage T4D. Virology. 1968 Apr;34(4):709–727. doi: 10.1016/0042-6822(68)90092-5. [DOI] [PubMed] [Google Scholar]
  14. LANNI Y. T. Invasion by bacteriophage T5. II. Dissociation of calcium-independent and calcium-dependent processes. Virology. 1960 Apr;10:514–529. doi: 10.1016/0042-6822(60)90133-1. [DOI] [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Lanni Y. Functions of two genes in the first-step-transfer DNA of bacteriophage T5. J Mol Biol. 1969 Aug 28;44(1):173–183. doi: 10.1016/0022-2836(69)90412-4. [DOI] [PubMed] [Google Scholar]
  17. MCCORQUODALE D. J., LANNI Y. T. MOLECULAR ASPECTS OF DNA TRANSFER FROM PHAGE T5 TO HOST CELLS. I. CHARACTERIZATION OF FIRST-STEP-TRANSFER MATERIAL. J Mol Biol. 1964 Oct;10:10–18. doi: 10.1016/s0022-2836(64)80023-1. [DOI] [PubMed] [Google Scholar]
  18. McCorquodale D. J., Buchanan J. M. Patterns of protein synthesis in T5-infected Escherichia coli. J Biol Chem. 1968 May 25;243(10):2550–2559. [PubMed] [Google Scholar]
  19. Moyer R. W., Buchanan J. M. Patterns of RNA synthesis in T5-infected cells. I. As studied by the technique of DNA-RNA hybridization-competition. Proc Natl Acad Sci U S A. 1969 Dec;64(4):1249–1256. doi: 10.1073/pnas.64.4.1249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pispa J. P., Sirbasku D. A., Buchanan J. M. Patterns of ribonucleic acid synthesis in T5-infected Escherichia coli. IV. Examination of the role of deoxyribonucleic acid replication. J Biol Chem. 1971 Mar 25;246(6):1658–1664. [PubMed] [Google Scholar]
  21. Reid M. S., Bieleski R. L. A simple apparatus for vertical flat-sheet polyacrylamide gel electrophoresis. Anal Biochem. 1968 Mar;22(3):374–381. doi: 10.1016/0003-2697(68)90278-9. [DOI] [PubMed] [Google Scholar]
  22. Riva S., Cascino A., Geiduschek E. P. Coupling of late transcription to viral replication in bacteriophage T4 development. J Mol Biol. 1970 Nov 28;54(1):85–102. doi: 10.1016/0022-2836(70)90447-x. [DOI] [PubMed] [Google Scholar]
  23. Riva S., Cascino A., Geiduschek E. P. Uncoupling of late transcription from DNA replication in bacteriophage T4 development. J Mol Biol. 1970 Nov 28;54(1):103–119. doi: 10.1016/0022-2836(70)90448-1. [DOI] [PubMed] [Google Scholar]
  24. SEKIGUCHI M., COHEN S. S. THE SYNTHESIS OF MESSENGER RNA WITHOUT PROTEIN SYNTHESIS. II. SYNTHESIS OF PHAGE-INDUCED RNA AND SEQUENTIAL ENZYME PRODUCTION. J Mol Biol. 1964 May;8:638–659. doi: 10.1016/s0022-2836(64)80114-5. [DOI] [PubMed] [Google Scholar]
  25. Sirbasku D. A., Buchanan J. M. Patterns of ribonucleic acid synthesis in T5-infected Escherichia coli. 3. Separation of low molecular weight ribonucleic acid species by disc electrophoresis on acrylamide gel columns. J Biol Chem. 1970 May 25;245(10):2693–2703. [PubMed] [Google Scholar]
  26. Studier F. W. Bacteriophage T7. Science. 1972 Apr 28;176(4033):367–376. doi: 10.1126/science.176.4033.367. [DOI] [PubMed] [Google Scholar]
  27. Zweig M., Cummings D. J. Structural proteins of bacteriophage T5. Virology. 1973 Feb;51(2):443–453. doi: 10.1016/0042-6822(73)90443-1. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES