Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1981 Aug;68(2):267–271. doi: 10.1104/pp.68.2.267

Mechanisms of Passive Potassium Influx in Corn Mitochondria 1

M Jane Fluegel 1, John B Hanson 1
PMCID: PMC427473  PMID: 16661899

Abstract

Corn mitochondria in 100 millimolar KCl show accelerated passive swelling upon addition of uncoupler. This unusual response has been compared with swelling produced by valinomycin, tripropyltin, and nigericin. It is concluded that the driving force for swelling lies with the chloride gradient and a high PCl:PK ratio, the chloride influx creating a negative membrane potential. The action of uncoupler is to facilitate K+ influx via the endogenous H+/K+ antiporter. The antiporter is active over the pH range 6 to 8, is not sensitive to Mg2+ concentration, and is not inactivated by aging. It is not clear why corn mitochondria show this exceptional activity of the H+/K+ antiporter in K+ influx. It is speculated that during isolation the antiporter may be exposed or activated, and that it contributes to cyclic K+ transport and high State 4 respiration rates.

Full text

PDF
268

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMOORE J. E., BARTLEY W. The permeability of isolated rat-liver mitochondria to sucrose, sodium chloride and potassium chloride at 0 degrees. Biochem J. 1958 Jun;69(2):223–236. doi: 10.1042/bj0690223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abou-Khalil S., Hanson J. B. Energy-linked Sulfate Uptake by Corn Mitochondria via the Phosphate Transporter. Plant Physiol. 1979 Apr;63(4):635–638. doi: 10.1104/pp.63.4.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Azzi A., Azzone G. F. Swelling and shrinkage phenomena in liver mitochondria. VI. Metabolism-independent swelling coupled to ion movement. Biochim Biophys Acta. 1967 May 9;131(3):468–478. doi: 10.1016/0005-2728(67)90006-0. [DOI] [PubMed] [Google Scholar]
  4. Barber J., Mills J., Love A. Electrical diffuse layers and their influence on photosynthetic processes. FEBS Lett. 1977 Mar 1;74(2):174–181. doi: 10.1016/0014-5793(77)80841-7. [DOI] [PubMed] [Google Scholar]
  5. Brierley G. P., Jurkowitz M., Chávez E., Jung D. W. Energy-dependent contraction of swollen heart mitochondria. J Biol Chem. 1977 Nov 25;252(22):7932–7939. [PubMed] [Google Scholar]
  6. Brierley G. P. The uptake and extrusion of monovalent cations by isolated heart mitochondria. Mol Cell Biochem. 1976 Jan 31;10(1):41–63. doi: 10.1007/BF01731680. [DOI] [PubMed] [Google Scholar]
  7. Chávez E., Jung D. W., Brierley G. P. Energy-dependence exchange of K+ in heart mitochondria. K+ efflux. Arch Biochem Biophys. 1977 Oct;183(2):460–470. doi: 10.1016/0003-9861(77)90381-2. [DOI] [PubMed] [Google Scholar]
  8. Garlid K. D. Unmasking the mitochondrial K/H exchanger: swelling-induced K+-loss. Biochem Biophys Res Commun. 1978 Aug 29;83(4):1450–1455. doi: 10.1016/0006-291x(78)91383-9. [DOI] [PubMed] [Google Scholar]
  9. Hanson J. B., Bertagnolli B. L., Shepherd W. D. Phosphate-induced Stimulation of Acceptorless Respiration in Corn Mitochondria. Plant Physiol. 1972 Sep;50(3):347–354. doi: 10.1104/pp.50.3.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hanson J. B., Malhotra S. S., Stoner C. D. Action of Calcium on Corn Mitochondria. Plant Physiol. 1965 Nov;40(6):1033–1040. doi: 10.1104/pp.40.6.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hanson J. B., Miller R. J. Evidence for active phosphate transport in maize mitochondria. Proc Natl Acad Sci U S A. 1967 Aug;58(2):727–734. doi: 10.1073/pnas.58.2.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hensley J. R., Hanson J. B. The action of valinomycin in uncoupling corn mitochondria. Plant Physiol. 1975 Jul;56(1):13–18. doi: 10.1104/pp.56.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Huber S. C., Moreland D. E. Permeability Properties of the Inner Membrane of Mung Bean Mitochondria and Changes during Energization. Plant Physiol. 1979 Jul;64(1):115–119. doi: 10.1104/pp.64.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jung D. W., Brierley G. P. Swelling and contraction of potato mitochondria. Plant Physiol. 1979 Dec;64(6):948–953. doi: 10.1104/pp.64.6.948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jung D. W., Chávez E., Brierley G. P. Energy-dependent exchange of K+ in heart mitochondria. K+ influx. Arch Biochem Biophys. 1977 Oct;183(2):452–459. doi: 10.1016/0003-9861(77)90380-0. [DOI] [PubMed] [Google Scholar]
  16. Jung D. W., Hanson J. B. Activation of 2,4-dinitrophenol-stimulated ATPase activity in cauliflower and corn mitochondria. Arch Biochem Biophys. 1975 Jun;168(2):358–368. doi: 10.1016/0003-9861(75)90264-7. [DOI] [PubMed] [Google Scholar]
  17. Kimpel J. A., Hanson J. B. Activation of endogenous respiration and anion transport in corn mitochondria by acidification of the medium. Plant Physiol. 1977 Dec;60(6):933–934. doi: 10.1104/pp.60.6.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kirk B. I., Hanson J. B. The Stoichiometry of Respiration-driven Potassium Transport in Corn Mitochondria. Plant Physiol. 1973 Feb;51(2):357–362. doi: 10.1104/pp.51.2.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Millard D. L., Wiskich J. T., Robertson R. N. Ion Uptake and Phosphorylation in Mitochondria: Effect of Monovalent Ions. Plant Physiol. 1965 Nov;40(6):1129–1135. doi: 10.1104/pp.40.6.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Selwyn M. J., Dawson A. P., Stockdale M., Gains N. Chloride-hydroxide exchange across mitochondrial, erythrocyte and artificial lipid membranes mediated by trialkyl- and triphenyltin compounds. Eur J Biochem. 1970 May 1;14(1):120–126. doi: 10.1111/j.1432-1033.1970.tb00268.x. [DOI] [PubMed] [Google Scholar]
  21. Stoner C. D., Hanson J. B. Swelling and contraction of corn mitochondria. Plant Physiol. 1966 Feb;41(2):255–266. doi: 10.1104/pp.41.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES