Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1972 Jan;69(1):44–49. doi: 10.1073/pnas.69.1.44

Physical mechanisms in photosynthesis: past elucidations and current problems.

R K Clayton
PMCID: PMC427541  PMID: 4333045

Full text

PDF
48

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold W., Clayton R. K. THE FIRST STEP IN PHOTOSYNTHESIS: EVIDENCE FOR ITS ELECTRONIC NATURE. Proc Natl Acad Sci U S A. 1960 Jun;46(6):769–776. doi: 10.1073/pnas.46.6.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bolton J. R., Clayton R. K., Reed D. W. An identification of the radical giving rise to the light-induced electron spin resonance signal in photosynthetic bacteria. Photochem Photobiol. 1969 Mar;9(3):209–218. doi: 10.1111/j.1751-1097.1969.tb07285.x. [DOI] [PubMed] [Google Scholar]
  3. Borisov A. Y., Godik V. I. Fluorescence lifetime of bacteriochlorophyll and reaction center photooxidation in a photosynthetic bacterium. Biochim Biophys Acta. 1970 Dec 8;223(2):441–443. doi: 10.1016/0005-2728(70)90204-5. [DOI] [PubMed] [Google Scholar]
  4. Clayton R. K. An analysis of the relations between fluorescence and photochemistry during photosynthesis. J Theor Biol. 1967 Feb;14(2):173–186. doi: 10.1016/0022-5193(67)90112-9. [DOI] [PubMed] [Google Scholar]
  5. Clayton R. K. Characteristics of prompt and delayed fluorescence from spinach chloroplasts. Biophys J. 1969 Jan;9(1):60–76. doi: 10.1016/S0006-3495(69)86369-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clayton R. K., Straley S. C. An optical absorption change that could be due to reduction of the primary photochemical electron acceptor in photosynthetic reaction centers. Biochem Biophys Res Commun. 1970;39(6):1114–1119. doi: 10.1016/0006-291x(70)90674-1. [DOI] [PubMed] [Google Scholar]
  7. Cohen W. S., Sherman L. A. Proton translocation and energy dependent quenching of chlorophyll a fluorescence. FEBS Lett. 1971 Sep 1;16(4):319–323. doi: 10.1016/0014-5793(71)80380-0. [DOI] [PubMed] [Google Scholar]
  8. Cramer W. A. Low potential titration of the fluorescence yield changes in photosynthetic bacteria. Biochim Biophys Acta. 1969 Sep 16;189(1):54–59. doi: 10.1016/0005-2728(69)90224-2. [DOI] [PubMed] [Google Scholar]
  9. Feher G. Some chemical and physical properties of a bacterial reaction center particle and its primary photochemical reactants. Photochem Photobiol. 1971 Sep;14(3):373–387. doi: 10.1111/j.1751-1097.1971.tb06180.x. [DOI] [PubMed] [Google Scholar]
  10. Joliot P. Cinétiques des réactions liées a l'émission d'oxygène photosynthétique. Biochim Biophys Acta. 1965 May 25;102(1):116–134. [PubMed] [Google Scholar]
  11. KOK B. Partial purification and determination of oxidation reduction potential of the photosynthetic chlorophyll complex absorbing at 700 millimicrons. Biochim Biophys Acta. 1961 Apr 15;48:527–533. doi: 10.1016/0006-3002(61)90050-6. [DOI] [PubMed] [Google Scholar]
  12. Ke B., Chaney T. H., Reed D. W. The electrostatic interaction between the reaction-center bacteriochlorophyll derived from Rhodopseudomonas spheroides and mammalian cytochrome c and its effect on light-activated electron transport. Biochim Biophys Acta. 1970 Sep 1;216(2):373–383. doi: 10.1016/0005-2728(70)90229-x. [DOI] [PubMed] [Google Scholar]
  13. Kihara T., Chance B. Cytochrome photooxidation at liqud nitrogen temperatures in photosynthetic bacteria. Biochim Biophys Acta. 1969 Sep 16;189(1):116–124. doi: 10.1016/0005-2728(69)90232-1. [DOI] [PubMed] [Google Scholar]
  14. Kok B., Malkin S., Owens O., Forbush B. Observations on the reducing side of the O2-evolving photoact. Brookhaven Symp Biol. 1966;19:446–459. [PubMed] [Google Scholar]
  15. Latimer P., Bannister T. T., Rabinowitch E. Quantum Yields of Fluorescence of Plant Pigments. Science. 1956 Sep 28;124(3222):585–586. doi: 10.1126/science.124.3222.585. [DOI] [PubMed] [Google Scholar]
  16. Loach P. A. Primary oxidation-reduction changes during photosynthesis in Rhodospirillum rubrum. Biochemistry. 1966 Feb;5(2):592–600. doi: 10.1021/bi00866a028. [DOI] [PubMed] [Google Scholar]
  17. McElroy J. D., Feher G., Mauzerall D. C. On the nature of the free radical formed during the primary process of bacterial photosynthesis. Biochim Biophys Acta. 1969 Jan 14;172(1):180–183. doi: 10.1016/0005-2728(69)90105-4. [DOI] [PubMed] [Google Scholar]
  18. Nicolson G. L., Clayton R. K. The reducing potential of the bacterial photosynthetic reaction center. Photochem Photobiol. 1969 Apr;9(4):395–399. doi: 10.1111/j.1751-1097.1969.tb07305.x. [DOI] [PubMed] [Google Scholar]
  19. Parson W. W., Case G. D. In Chromatium, a single photochemical reaction center oxidizes both cytochrome C552 and cytochrome C555. Biochim Biophys Acta. 1970;205(2):232–245. doi: 10.1016/0005-2728(70)90253-7. [DOI] [PubMed] [Google Scholar]
  20. Parson W. W. The role of P870 in bacterial photosynthesis. Biochim Biophys Acta. 1968 Jan 15;153(1):248–259. doi: 10.1016/0005-2728(68)90167-9. [DOI] [PubMed] [Google Scholar]
  21. RUBIN A. B., OSNITSKAIA L. K. [On relations between the physiological state and the average length of fluorescence of bacteriochlorophyll in the cells of photosynthesizing bacteria]. Mikrobiologiia. 1963 Mar-Apr;32:200–203. [PubMed] [Google Scholar]
  22. Reed D. W., Clayton R. K. Isolation of a reaction center fraction from Rhodopseudomonas spheroides. Biochem Biophys Res Commun. 1968 Mar 12;30(5):471–475. doi: 10.1016/0006-291x(68)90075-2. [DOI] [PubMed] [Google Scholar]
  23. Reed D. W., Zankel K. L., Clayton R. K. THE EFFECT OF REDOX POTENTIAL ON P870 FLUORESCENCE IN REACTION CENTERS FROM Rhodopseudomonas spheroides. Proc Natl Acad Sci U S A. 1969 May;63(1):42–46. doi: 10.1073/pnas.63.1.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sybesma C., Fowler C. F. Evidence for two light-driven reactions in the purple photosynthetic bacterium, Rhodospirillum rubrum. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1343–1348. doi: 10.1073/pnas.61.4.1343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wang R. T., Clayton R. K. The absolute yield of bacteriochlorophyll fluorescence in vivo. Photochem Photobiol. 1971 Mar;13(3):215–224. doi: 10.1111/j.1751-1097.1971.tb06107.x. [DOI] [PubMed] [Google Scholar]
  26. Wraight C. A., Crofts A. R. Energy-dependent quenching of chlorophyll alpha fluorescence in isolated chloroplasts. Eur J Biochem. 1970 Dec;17(2):319–327. doi: 10.1111/j.1432-1033.1970.tb01169.x. [DOI] [PubMed] [Google Scholar]
  27. Zankel K. L., Reed D. W., Clayton R. K. Fluorescence and photochemical quenching in photosynthetic reaction centers. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1243–1249. doi: 10.1073/pnas.61.4.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES