Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1975 Sep;8(3):277–281. doi: 10.1128/aac.8.3.277

Relation of Beta-Lactamase Activity to Antimicrobial Susceptibility in Serratia marcescens

Joseph C Tsang *, Gerald A Sansing , Marcia A Miller
PMCID: PMC429306  PMID: 1101819

Abstract

One-hundred clinical isolates of Serratia marcescens were tested for susceptibility to cephalothin, carbenicillin, ticarcillin, ampicillin, and cefoxitin. The majority of the 100 isolates (≥70%) were susceptible to carbenicillin, ticarcillin, and cefoxitin; less than one-half were susceptible to ampicillin; none were susceptible to cephalothin. Ten isolates from the 100 organisms tested were selectively assayed for their β-lactamase activity. Enzyme activity was measured using either iodometric or spectrophotometric methods, and the microbiological assay technique. It was concluded that β-lactamase production was not the sole determinant in β-lactam antibiotic resistance. Resistance without demonstrable β-lactamase was evident in strains for cephalothin, ampicillin, and cefoxitin. In addition, one strain which was susceptible to all antibiotics except cephalothin, elaborated considerable β-lactamase activity.

Full text

PDF
280

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderes E. A., Sandine W. E., Elliker P. R. Lipids of antibiotic-sensitive and -resistant strains of Pseudomonas aeruginosa. Can J Microbiol. 1971 Nov;17(11):1357–1365. doi: 10.1139/m71-217. [DOI] [PubMed] [Google Scholar]
  2. Brown M. R., Watkins W. M. Low magnesium and phospholipid content of cell wals of Pseudomonas aeruginosa resistant to polymyxin. Nature. 1970 Sep 26;227(5265):1360–1361. doi: 10.1038/2271360a0. [DOI] [PubMed] [Google Scholar]
  3. Button G. L., Miller M. A., Tsang J. C. Antibiogram and lipid analysis of a pigmented strain of Serratia marcescens and its nonpigmented variants. Antimicrob Agents Chemother. 1975 Feb;7(2):219–222. doi: 10.1128/aac.7.2.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chang C. Y., Molar R. E., Tsang J. C. Lipid content of antibiotic-resistant and -sensitive strains of Serratia marcescens. Appl Microbiol. 1972 Dec;24(6):972–976. doi: 10.1128/am.24.6.972-976.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clayton E., Von Graevenitz A. Nonpigmented Serratia marcescens. JAMA. 1966 Sep 26;197(13):1059–1064. [PubMed] [Google Scholar]
  6. Farrar W. E., Krause J. M. Relationship Between beta-Lactamase Activity and Resistance of Enterobacter to Cephalothin. Infect Immun. 1970 Nov;2(5):610–616. doi: 10.1128/iai.2.5.610-616.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Garber N., Friedman J. Beta-lactamase and the resistance of Pseudomonas aeruginosa to various penicillins and cephalosporins. J Gen Microbiol. 1970 Dec;64(3):343–352. doi: 10.1099/00221287-64-3-343. [DOI] [PubMed] [Google Scholar]
  8. Grimont P. A., Dulong de Rosnay H. L. Numerical study of 60 strains of Serratia. J Gen Microbiol. 1972 Sep;72(2):259–268. doi: 10.1099/00221287-72-2-259. [DOI] [PubMed] [Google Scholar]
  9. Jackson G. G., Lolans V. T., Gallegos B. G. Comparative activity of bacterial beta-lactamases on penicillins and cephalosporins. J Infect Dis. 1973 Oct;128(Suppl):S327–S323. doi: 10.1093/infdis/128.supplement_2.s327. [DOI] [PubMed] [Google Scholar]
  10. Johnson E., Ellner P. D. Distribution of Serratia species in clinical specimens. Appl Microbiol. 1974 Sep;28(3):513–514. doi: 10.1128/am.28.3.513-514.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Marshall M. J., Ross G. W., Chanter K. V., Harris A. M. Comparison of the substrate specificities of the -lactamases from Klebsiella aerogenes 1082E and Enterobacter cloacae P99. Appl Microbiol. 1972 Apr;23(4):765–769. doi: 10.1128/am.23.4.765-769.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Medeiros A. A., Kent R. L., O'Brien T. F. Characterization and prevalence of the different mechanisms of resistance to beta-lactam antibiotics in clinical isolates of Escherichia coli. Antimicrob Agents Chemother. 1974 Dec;6(6):791–801. doi: 10.1128/aac.6.6.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Miller M. A., Chang C. Y., Tsang J. C. Antibiograms and lipid contents of pigmented and nonpigmented strains of Serratia marcescens. Antimicrob Agents Chemother. 1973 Jul;4(1):66–68. doi: 10.1128/aac.4.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Neu H. C. Cefoxitin, a semisynthetic cephamycin antibiotic: antibacterial spectrum and resistance to hydrolysis by gram-negative beta-lactamases. Antimicrob Agents Chemother. 1974 Aug;6(2):170–176. doi: 10.1128/aac.6.2.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Onishi H. R., Daoust D. R., Zimmerman S. B., Hendlin D., Stapley E. O. Cefoxitin, a semisynthetic cephamycin antibiotic: resistance to beta-lactamase inactivation. Antimicrob Agents Chemother. 1974 Jan;5(1):38–48. doi: 10.1128/aac.5.1.38. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. PERRET C. J. Iodometric assay of penicillinase. Nature. 1954 Nov 27;174(4439):1012–1013. doi: 10.1038/1741012a0. [DOI] [PubMed] [Google Scholar]
  18. Winshell E. B., Neu H. C. Relation of cell wall lipid content of Serratia marcescens to resistance to antimicrobial agents. Antimicrob Agents Chemother. 1974 Jul;6(1):73–75. doi: 10.1128/aac.6.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES