Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1976 Aug;10(2):299–306. doi: 10.1128/aac.10.2.299

Genetic Basis of Streptococcin A-FF22 Production

J R Tagg a,1, L W Wannamaker a
PMCID: PMC429739  PMID: 984773

Abstract

Spontaneous, low-frequency loss of ability to produce streptococcin A-FF22 (SA) by group A streptococcus strain FF22 was observed. The proportion of non-SA-producing (SA) derivatives occurring in strain FF22 cultures grown in Todd Hewitt broth supplemented with 1% of yeast extract (THBY) was increased on treatment with ethidium bromide, acriflavin, or rifampin. The highest incidence of SA organisms, however, was found in untreated THBY cultures that had been aging by incubation at 37°C for several months. The possibility of selective effects in these experiments, operating to enhance the apparent frequency of SA bacteria, was discounted. The survival of SA derivatives in association with populations of SA+ bacteria was dependent upon the use of culture conditions inimical to SA activity, since a consistent finding was that the loss of ability to produce SA was associated with loss of immunity to the killing action of this bacteriocin. Whereas selective killing of SA derivatives was evident in mixed cultures of SA+ and SA strains in tryptic soy broth, no such effect was demonstrable in THBY. In these experiments, elimination of SA cells seemed directly related to the presence of active SA. Purified clones of SA substrains did not seem revertible to SA production, either spontaneously or on treatment with nitrosoguanidine. It is suggested that the property of production of SA by group A streptococcus strain FF22, together with that of host cell immunity to the homologous bacteriocin, may be mediated by plasmid-borne genetic determinants.

Full text

PDF
300

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cleary P. P., Johnson Z., Wannamaker L. Genetic instability of M protein and serum opacity factor of group A streptocci: evidence suggesting extrachromosomal control. Infect Immun. 1975 Jul;12(1):109–118. doi: 10.1128/iai.12.1.109-118.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Clewell D. B., Franke A. E. Characterization of a plasmid determining resistance to erythromycin, lincomycin, and vernamycin Balpha in a strain Streptococcus pyogenes. Antimicrob Agents Chemother. 1974 May;5(5):534–537. doi: 10.1128/aac.5.5.534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clewell D. B., Yagi Y., Bauer B. Plasmid-determined tetracycline resistance in Streptococcus faecalis: evidence for gene amplification during growth in presence of tetracycline. Proc Natl Acad Sci U S A. 1975 May;72(5):1720–1724. doi: 10.1073/pnas.72.5.1720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cohen J. O. Effect of culture medium composition and pH on the production of M protein and proteinase by group A Streptococci. J Bacteriol. 1969 Sep;99(3):737–744. doi: 10.1128/jb.99.3.737-744.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dajani A. S., Taube Z. Plasmid-mediated production of staphylococcin in bacteriophage type 71 Staphylococcus aureus. Antimicrob Agents Chemother. 1974 Jun;5(6):594–598. doi: 10.1128/aac.5.6.594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gagliano V. J., Hinsdill R. D. Characterization of a Staphylococcus aureus bacteriocin. J Bacteriol. 1970 Oct;104(1):117–125. doi: 10.1128/jb.104.1.117-125.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jacob A. E., Hobbs S. J. Conjugal transfer of plasmid-borne multiple antibiotic resistance in Streptococcus faecalis var. zymogenes. J Bacteriol. 1974 Feb;117(2):360–372. doi: 10.1128/jb.117.2.360-372.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jetten A. M., Vogels G. D. Characterization and extrachromosomal control of bacteriocin production in Staphylococcus aureus. Antimicrob Agents Chemother. 1973 Jul;4(1):49–57. doi: 10.1128/aac.4.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jetten A. M., Vogels G. D. Nature and properties of a Staphylococcus epidermidis bacteriocin. J Bacteriol. 1972 Oct;112(1):243–250. doi: 10.1128/jb.112.1.243-250.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kozar W., Rajchert-Trzpil M., Dobrzański W. T. The effect of proflavin, ethidium bromide and an elevated temperature on the appearance of nisin-negative clones in nisin-producing strains of Streptococcus lactis. J Gen Microbiol. 1974 Aug;83(2):295–302. doi: 10.1099/00221287-83-2-295. [DOI] [PubMed] [Google Scholar]
  11. LANCEFIELD R. C. Differentiation of group A streptococci with a common R antigen into three serological types, with special reference to the bactericidal test. J Exp Med. 1957 Oct 1;106(4):525–544. doi: 10.1084/jem.106.4.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Malke H. Genetics of resistance to macrolide antibiotics and lincomycin in natural isolates of Streptococcus pyogenes. Mol Gen Genet. 1974;135(4):349–367. doi: 10.1007/BF00271149. [DOI] [PubMed] [Google Scholar]
  13. Mindich L. Bacteriocins of Diplococcus pneumoniae. I. Antagonistic relationships and genetic transformations. J Bacteriol. 1966 Oct;92(4):1090–1098. doi: 10.1128/jb.92.4.1090-1098.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nakae M., Inoue M., Mitsuhashi S. Artificial elimination of drug resistance from group A beta-hemolytic streptococci. Antimicrob Agents Chemother. 1975 May;7(5):719–720. doi: 10.1128/aac.7.5.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. PARKER M. T., SIMMONS L. E. The inhibition of Corynebacterium diphtheriae and other gram-positive organisms by Staphylococcus aureus. J Gen Microbiol. 1959 Oct;21:457–476. doi: 10.1099/00221287-21-2-457. [DOI] [PubMed] [Google Scholar]
  16. Rosendorf L. L., Kayser F. H. Transduction and plasmid deoxyribonucleic acid analysis in a multiply antibiotic-resistant strain of Staphylococcus epidermidis. J Bacteriol. 1974 Nov;120(2):679–686. doi: 10.1128/jb.120.2.679-686.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tagg J. R., Dajani A. S., Wannamaker L. W. Bacteriocin of a group B streptococcus: partial purification and characterization. Antimicrob Agents Chemother. 1975 Jun;7(6):764–772. doi: 10.1128/aac.7.6.764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tagg J. R., Dajani A. S., Wannamaker L. W., Gray E. D. Group A streptococcal bacteriocin. Production, purification, and mode of action. J Exp Med. 1973 Nov 1;138(5):1168–1183. doi: 10.1084/jem.138.5.1168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tagg J. R., Read R. S., McGiven A. R. Bacteriocin of a group A streptococcus: partial purification and properties. Antimicrob Agents Chemother. 1973 Sep;4(3):214–221. doi: 10.1128/aac.4.3.214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tzannetis S., Poulaki-Tsontou A., Papavassiliou J. Bacteriocine production in group B streptococci. Pathol Microbiol (Basel) 1974;41(1):51–57. doi: 10.1159/000162563. [DOI] [PubMed] [Google Scholar]
  21. Upreti G. C., Hinsdill R. D. Production and mode of action of lactocin 27: bacteriocin from a homofermentative Lactobacillus. Antimicrob Agents Chemother. 1975 Feb;7(2):139–145. doi: 10.1128/aac.7.2.139. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES