Abstract
A specific action of 4-nitropyridine 1-oxide on Escherichia coli K-12 Pro+ strains leading to highly efficient, selective isolation of Pro− mutants is described. Incubation of Pro+ cells with a sublethal concentration of 4-nitropyridine 1-oxide in Penassay broth gave Pro− mutants, which lacked either the biosynthetic pathway of proline from glutamic acid to glutamyl γ-phosphate (proB−) or the pathway from glutamyl γ-phosphate to glutamic γ-semialdehyde (proA−) or both. Pro− mutants, which have the metabolic block between Δ1 pyrroline-5-carboxylate (the cyclized dehydration product of glutamic γ-semialdehyde) and proline (proC−) were not found among survivors. Treatment of Pro+ cells with N-methyl-N′-nitro-N-nitrosoguanidine led to isolation of all three types of Pro− mutants, suggesting that the action of 4-nitropyridine 1-oxide on Pro+ cells is apparently distinct from the action of N-methyl-N′-nitro-N-nitrosoguanidine. F-duction and interrupted mating experiments led to determination of the correlation between proline loci and the biosynthetic pathway of proline from glutamic acid.
Full text
PDF![325](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1436/429743/9bab6d41302d/aac00314-0143.png)
![326](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1436/429743/bc64bc7f34b6/aac00314-0144.png)
![327](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1436/429743/a4adf7ca3e04/aac00314-0145.png)
![328](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1436/429743/61eff6e42c1d/aac00314-0146.png)
![329](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1436/429743/9dd20a0ea595/aac00314-0147.png)
![330](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1436/429743/587bd1ae9339/aac00314-0148.png)
![331](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1436/429743/46aa6b7e6342/aac00314-0149.png)
![332](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1436/429743/7ea64b1b001b/aac00314-0150.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Araki M., Koga C., Kawazoe Y. Carcinogenicity of 4-nitroquinoline 1-oxide analogs: pyridine series. Gan. 1971 Aug;62(4):325–327. [PubMed] [Google Scholar]
- Baich A., Pierson D. J. Control of proline synthesis in Escherichia coli. Biochim Biophys Acta. 1965 Jul 8;104(2):397–404. doi: 10.1016/0304-4165(65)90345-4. [DOI] [PubMed] [Google Scholar]
- Baich A. Proline synthesis in Escherichia coli. A proline-inhibitable glutamic acid kinase. Biochim Biophys Acta. 1969 Dec 30;192(3):462–467. doi: 10.1016/0304-4165(69)90395-x. [DOI] [PubMed] [Google Scholar]
- Baich A. The biosynthesis of proline in Escherichia coli: phosphate-dependent glutamate -semialdehyde dehydrogenase (NADP), the second enzyme in the pathway. Biochim Biophys Acta. 1971 Jul 20;244(1):129–134. doi: 10.1016/0304-4165(71)90129-2. [DOI] [PubMed] [Google Scholar]
- Berg C. M., Rossi J. J. Proline excretion and indirect suppression in Escherichia coli and Salmonella typhimurium. J Bacteriol. 1974 Jun;118(3):928–934. doi: 10.1128/jb.118.3.928-934.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Broda P., Collins J. F. Gross map distances and Hfr transfer times in Escherichia coli K-12. J Bacteriol. 1974 Feb;117(2):747–752. doi: 10.1128/jb.117.2.747-752.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CURTIS S. R., 3rd CHROMOSOMAL ABERRATIONS ASSOCIATED WITH MUTATIONS TO BACTERIOPHAGE RESISTANCE IN ESCHERICHIA COLI. J Bacteriol. 1965 Jan;89:28–40. doi: 10.1128/jb.89.1.28-40.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Condamine H. Mutants des voies de biosynthèse et de dégradation de la proline chez E. coli K 12. Ann Inst Pasteur (Paris) 1971 Jan;120(1):9–22. [PubMed] [Google Scholar]
- Curtiss R., 3rd, Charamella L. J., Stallions D. R., Mays J. A. Parental functions during conjugation in Escherichia coli K-12. Bacteriol Rev. 1968 Dec;32(4 Pt 1):320–348. [PMC free article] [PubMed] [Google Scholar]
- DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GROSSOWICZ N., WAINFAN E., BOREK E., WAELSCH H. The enzymatic formation of hydroxamic acids from glutamine and asparagine. J Biol Chem. 1950 Nov;187(1):111–125. [PubMed] [Google Scholar]
- Hirota Y., Inuzuka M., Tomoeda M. Elective selection of proline-requiring mutants. J Bacteriol. 1966 Jun;91(6):2392–2392. doi: 10.1128/jb.91.6.2392-.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirota Y. THE EFFECT OF ACRIDINE DYES ON MATING TYPE FACTORS IN ESCHERICHIA COLI. Proc Natl Acad Sci U S A. 1960 Jan;46(1):57–64. doi: 10.1073/pnas.46.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inuzuka M., Toyama H., Miyano H., Tomoeda M. Specific action of 4-nitropyridine 1-oxide on Escherichia coli K-12 Pro+ strains leading to the isolation of proline-requiring mutants: mechanism of action of 4-nitropyridine 1-oxide. Antimicrob Agents Chemother. 1976 Aug;10(2):333–343. doi: 10.1128/aac.10.2.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LENNOX E. S. Transduction of linked genetic characters of the host by bacteriophage P1. Virology. 1955 Jul;1(2):190–206. doi: 10.1016/0042-6822(55)90016-7. [DOI] [PubMed] [Google Scholar]
- Miyake T, Demerec M. Proline Mutants of Salmonella Typhimurium. Genetics. 1960 Jun;45(6):755–762. doi: 10.1093/genetics/45.6.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NAKAHARA W., FUKUOKA F., SUGIMURA T. Carcinogenic action of 4-nitroquinoline-N-oxide. Gan. 1957 Jun;48(2):129–137. [PubMed] [Google Scholar]
- Okabayashi T., Ide M., Yoshimoto A., Otsubo M. Mutagenic activity of 4-nitroquinoline 1-oxide and 4-hydroxyaminoquinoline 1-oxide on bacteria. Chem Pharm Bull (Tokyo) 1965 May;13(5):610–611. doi: 10.1248/cpb.13.610. [DOI] [PubMed] [Google Scholar]
- PEISACH J., STRECKER H. J. The interconversion of glutamic acid and proline. V. The reduction of delta 1-pyrroline-5-carboxylic acid to proline. J Biol Chem. 1962 Jul;237:2255–2260. [PubMed] [Google Scholar]
- STRECKER H. J. The interconversion of glutamic acid and proline. I. The formation of delta1-pyrroline-5-carboxylic acid from glutamic acid in Escherichia coli. J Biol Chem. 1957 Apr;225(2):825–834. [PubMed] [Google Scholar]
- Taylor A. L. Current linkage map of Escherichia coli. Bacteriol Rev. 1970 Jun;34(2):155–175. doi: 10.1128/br.34.2.155-175.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomoeda M., Inuzuka M., Kubo N., Nakamura S. Effective elimination of drug resistance and sex factors in Escherichia coli by sodium dodecyl sulfate. J Bacteriol. 1968 Mar;95(3):1078–1089. doi: 10.1128/jb.95.3.1078-1089.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tristram H., Thurston C. F. Control of proline biosynthesis by proline and proline analogues. Nature. 1966 Oct 1;212(5057):74–75. doi: 10.1038/212074a0. [DOI] [PubMed] [Google Scholar]
- Yoshinaga F., Takeda Y., Okumura S. Glutamate kinase activity in Brevibacterium flavum: relationship between L-proline and L-glutamine biosynthesis. Biochem Biophys Res Commun. 1967 Apr 20;27(2):143–149. doi: 10.1016/s0006-291x(67)80053-6. [DOI] [PubMed] [Google Scholar]