Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1977 Sep;12(3):373–382. doi: 10.1128/aac.12.3.373

Plasmids Carried by Antibiotic-Resistant Marine Bacteria

Ronald K Sizemore 1,, R R Colwell 1
PMCID: PMC429921  PMID: 334064

Abstract

Antibiotic-resistant bacteria were isolated from seawater samples collected in the Atlantic Ocean off the southeastern coast of the United States. Large numbers of antibiotic-resistant bacterial strains were found to be present in harbor and inshore waters; however, the percentage of resistant strains was higher for several seawater samples collected offshore than for those collected near shore. Bacteria resistant to tetracycline, chloramphenicol, and streptomycin were found in nearly all samples collected, including samples from 200 miles (about 522 km) offshore and at depths to 8,200 m. Sediment samples, in general, were found to contain smaller populations of resistant strains as compared with the seawater samples examined. Antibiotic-resistant bacteria exhibiting phenetic characteristics common to autochthonous marine bacterial species were examined in detail, and several of the isolates exhibited unstable antibiotic resistance, which was transferable to recipient Escherichia coli cells. Deoxyribonucleic acid preparations from 10 strains examined by ethidium bromide-cesium chloride density sedimentation revealed that 6 of the strains contained covalently closed circular plasmid deoxyribonucleic acid.

Full text

PDF
377

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauer W., Vinograd J. The interaction of closed circular DNA with intercalative dyes. I. The superhelix density of SV40 DNA in the presence and absence of dye. J Mol Biol. 1968 Apr 14;33(1):141–171. doi: 10.1016/0022-2836(68)90286-6. [DOI] [PubMed] [Google Scholar]
  2. Chakrabarty A. M. Genetic basis of the biodegradation of salicylate in Pseudomonas. J Bacteriol. 1972 Nov;112(2):815–823. doi: 10.1128/jb.112.2.815-823.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Citarella R. V., Colwell R. R. Polyphasic taxonomy of the genus Vibrio: polynucleotide sequence relationships among selected Vibrio species. J Bacteriol. 1970 Oct;104(1):434–442. doi: 10.1128/jb.104.1.434-442.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clewell D. B., Helinski D. R. Supercoiled circular DNA-protein complex in Escherichia coli: purification and induced conversion to an opern circular DNA form. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1159–1166. doi: 10.1073/pnas.62.4.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cornelis G., Colson C. Restriction of DNA in Yersinia enterocolitica detected by recipient ability for a derepressed R factor from Escherichia coli. J Gen Microbiol. 1975 Apr;87(2):285–291. doi: 10.1099/00221287-87-2-285. [DOI] [PubMed] [Google Scholar]
  6. Davis C. E., Anandan J. The evolution of r factor. A study of a "preantibiotic" community in Borneo. N Engl J Med. 1970 Jan 15;282(3):117–122. doi: 10.1056/NEJM197001152820302. [DOI] [PubMed] [Google Scholar]
  7. Feary T. W., Sturtevant A. B., Jr, Lankford J. Antibiotic-resistant coliforms in fresh and salt water. Arch Environ Health. 1972 Sep;25(3):215–220. doi: 10.1080/00039896.1972.10666163. [DOI] [PubMed] [Google Scholar]
  8. Gardner P., Smith D. H., Beer H., Moellering R. C., Jr Recovery of resistance (R) factors from a drug-free community. Lancet. 1969 Oct 11;2(7624):774–776. doi: 10.1016/s0140-6736(69)90482-6. [DOI] [PubMed] [Google Scholar]
  9. Novick R. P. Extrachromosomal inheritance in bacteria. Bacteriol Rev. 1969 Jun;33(2):210–263. doi: 10.1128/br.33.2.210-263.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Richmond M. H. Resistance factors and their ecological importance to bacteria and to man. Prog Nucleic Acid Res Mol Biol. 1973;13:191–248. doi: 10.1016/s0079-6603(08)60104-x. [DOI] [PubMed] [Google Scholar]
  11. Richmond M. H. Some environmental consequences of the use of antibiotics: or 'what goes up must come down'. J Appl Bacteriol. 1972 Jun;35(2):155–176. doi: 10.1111/j.1365-2672.1972.tb03687.x. [DOI] [PubMed] [Google Scholar]
  12. Salisbury V., Hedges R. W., Datta N. Two modes of "curing" transmissible bacterial plasmids. J Gen Microbiol. 1972 May;70(3):443–452. doi: 10.1099/00221287-70-3-443. [DOI] [PubMed] [Google Scholar]
  13. Sizemore R. K., Colwell R. R., Tubiash H. S., Lovelace T. E. Bacterial flora of the hemolymph of the blue crab, Callinectes sapidus: numerical taxonomy. Appl Microbiol. 1975 Mar;29(3):393–399. doi: 10.1128/am.29.3.393-399.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Smith D. H. R factor infection of Escherichia coli lyophilized in 1946. J Bacteriol. 1967 Dec;94(6):2071–2072. doi: 10.1128/jb.94.6.2071-2072.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Smith H. W. Incidence of R + Escherichia coli in coastal bathing waters of Britain. Nature. 1971 Nov 19;234(5325):155–156. doi: 10.1038/234155a0. [DOI] [PubMed] [Google Scholar]
  16. Smith H. W. Incidence of river water of Escherichia coli containing R factors. Nature. 1970 Dec 26;228(5278):1286–1288. doi: 10.1038/2281286a0. [DOI] [PubMed] [Google Scholar]
  17. WATANABE T. Infective heredity of multiple drug resistance in bacteria. Bacteriol Rev. 1963 Mar;27:87–115. doi: 10.1128/br.27.1.87-115.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wantanabe T., Aoki T., Ogata Y., Egusa S. Anbtibiotics and drug resistance in animals. R factors related to fish culturing. Ann N Y Acad Sci. 1971 Jun 11;182:383–410. doi: 10.1111/j.1749-6632.1971.tb30674.x. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES