Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Jan 18;91(2):684–688. doi: 10.1073/pnas.91.2.684

Monoclonal antibodies to nerve growth factor affect the postnatal development of the visual system.

N Berardi 1, A Cellerino 1, L Domenici 1, M Fagiolini 1, T Pizzorusso 1, A Cattaneo 1, L Maffei 1
PMCID: PMC43013  PMID: 8290581

Abstract

Exogenous supply of nerve growth factor (NGF) prevents the effects of monocular deprivation. This suggests that visual afferents may be competing for an endogenous neurotrophic factor, related to NGF, whose production by postsynaptic cells depends on the activity of afferent fibers. To test the hypothesis that endogenous NGF may play a role in the functional and anatomical development of the rat geniculo cortical system, the physiological action of NGF in the rat visual system was antagonized by using two independent monoclonal antibodies which neutralize NGF (alpha D11 and 4C8). To provide a continuous supply of antibodies during the period of visual cortical plasticity, alpha D11 or 4C8 antibody-producing hybridoma cells were implanted in the lateral ventricle of rats at postnatal day 15. This resulted in dramatic alterations of two of the most important parameters characterizing the functional development of the visual system, namely, visual acuity and binocularity of cortical neurons and in shrinkage of cells in the lateral geniculate nucleus. This demonstrates that the action of endogenous NGF is necessary for the normal functional and anatomical development of the geniculocortical system.

Full text

PDF
684

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berardi N., Domenici L., Gravina A., Maffei L. Pattern ERG in rats following section of the optic nerve. Exp Brain Res. 1990;79(3):539–546. doi: 10.1007/BF00229323. [DOI] [PubMed] [Google Scholar]
  2. Berardi N., Domenici L., Parisi V., Pizzorusso T., Cellerino A., Maffei L. Monocular deprivation effects in the rat visual cortex and lateral geniculate nucleus are prevented by nerve growth factor (NGF). I. Visual cortex. Proc Biol Sci. 1993 Jan 22;251(1330):17–23. doi: 10.1098/rspb.1993.0003. [DOI] [PubMed] [Google Scholar]
  3. Biocca S., Neuberger M. S., Cattaneo A. Expression and targeting of intracellular antibodies in mammalian cells. EMBO J. 1990 Jan;9(1):101–108. doi: 10.1002/j.1460-2075.1990.tb08085.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carmignoto G., Canella R., Candeo P., Comelli M. C., Maffei L. Effects of nerve growth factor on neuronal plasticity of the kitten visual cortex. J Physiol. 1993 May;464:343–360. doi: 10.1113/jphysiol.1993.sp019638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Castrén E., Zafra F., Thoenen H., Lindholm D. Light regulates expression of brain-derived neurotrophic factor mRNA in rat visual cortex. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9444–9448. doi: 10.1073/pnas.89.20.9444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cattaneo A., Neuberger M. S. Polymeric immunoglobulin M is secreted by transfectants of non-lymphoid cells in the absence of immunoglobulin J chain. EMBO J. 1987 Sep;6(9):2753–2758. doi: 10.1002/j.1460-2075.1987.tb02569.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cattaneo A., Rapposelli B., Calissano P. Three distinct types of monoclonal antibodies after long-term immunization of rats with mouse nerve growth factor. J Neurochem. 1988 Apr;50(4):1003–1010. doi: 10.1111/j.1471-4159.1988.tb10565.x. [DOI] [PubMed] [Google Scholar]
  8. Domenici L., Berardi N., Carmignoto G., Vantini G., Maffei L. Nerve growth factor prevents the amblyopic effects of monocular deprivation. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8811–8815. doi: 10.1073/pnas.88.19.8811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Domenici L., Cellerino A., Maffei L. Monocular deprivation effects in the rat visual cortex and lateral geniculate nucleus are prevented by nerve growth factor (NGF). II. Lateral geniculate nucleus. Proc Biol Sci. 1993 Jan 22;251(1330):25–31. doi: 10.1098/rspb.1993.0004. [DOI] [PubMed] [Google Scholar]
  10. Gnahn H., Hefti F., Heumann R., Schwab M. E., Thoenen H. NGF-mediated increase of choline acetyltransferase (ChAT) in the neonatal rat forebrain: evidence for a physiological role of NGF in the brain? Brain Res. 1983 Jul;285(1):45–52. doi: 10.1016/0165-3806(83)90107-4. [DOI] [PubMed] [Google Scholar]
  11. HUBEL D. H., WIESEL T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol. 1962 Jan;160:106–154. doi: 10.1113/jphysiol.1962.sp006837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hayashi M., Yamashita A., Shimizu K. Nerve growth factor in the primate central nervous system: regional distribution and ontogeny. Neuroscience. 1990;36(3):683–689. doi: 10.1016/0306-4522(90)90011-r. [DOI] [PubMed] [Google Scholar]
  13. Hefti F. Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections. J Neurosci. 1986 Aug;6(8):2155–2162. doi: 10.1523/JNEUROSCI.06-08-02155.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kromer L. F. Nerve growth factor treatment after brain injury prevents neuronal death. Science. 1987 Jan 9;235(4785):214–216. doi: 10.1126/science.3798108. [DOI] [PubMed] [Google Scholar]
  15. Large T. H., Bodary S. C., Clegg D. O., Weskamp G., Otten U., Reichardt L. F. Nerve growth factor gene expression in the developing rat brain. Science. 1986 Oct 17;234(4774):352–355. doi: 10.1126/science.3764415. [DOI] [PubMed] [Google Scholar]
  16. Levi-Montalcini R., Angeletti P. U. Second symposium on catecholamines. Modification of sympathetic function. Immunosympathectomy. Pharmacol Rev. 1966 Mar;18(1):619–628. [PubMed] [Google Scholar]
  17. Maffei L., Berardi N., Domenici L., Parisi V., Pizzorusso T. Nerve growth factor (NGF) prevents the shift in ocular dominance distribution of visual cortical neurons in monocularly deprived rats. J Neurosci. 1992 Dec;12(12):4651–4662. doi: 10.1523/JNEUROSCI.12-12-04651.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nishio T., Akiguchi I., Furukawa S. Detailed distribution of nerve growth factor in rat brain determined by a highly sensitive enzyme immunoassay. Exp Neurol. 1992 Apr;116(1):76–84. doi: 10.1016/0014-4886(92)90178-s. [DOI] [PubMed] [Google Scholar]
  19. Piccioli P., Ruberti F., Biocca S., Di Luzio A., Werge T. M., Bradbury A., Cattaneo A. Neuroantibodies: molecular cloning of a monoclonal antibody against substance P for expression in the central nervous system. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5611–5615. doi: 10.1073/pnas.88.13.5611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Risau W., Wolburg H. Development of the blood-brain barrier. Trends Neurosci. 1990 May;13(5):174–178. doi: 10.1016/0166-2236(90)90043-a. [DOI] [PubMed] [Google Scholar]
  21. Ruberti F., Bradbury A., Cattaneo A. Cloning and expression of an anti-nerve growth factor (NGF) antibody for studies using the neuroantibody approach. Cell Mol Neurobiol. 1993 Oct;13(5):559–568. doi: 10.1007/BF00711464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schnell L., Schwab M. E. Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature. 1990 Jan 18;343(6255):269–272. doi: 10.1038/343269a0. [DOI] [PubMed] [Google Scholar]
  23. Shatz C. J. Impulse activity and the patterning of connections during CNS development. Neuron. 1990 Dec;5(6):745–756. doi: 10.1016/0896-6273(90)90333-b. [DOI] [PubMed] [Google Scholar]
  24. Thoenen H. The changing scene of neurotrophic factors. Trends Neurosci. 1991 May;14(5):165–170. doi: 10.1016/0166-2236(91)90097-e. [DOI] [PubMed] [Google Scholar]
  25. Vantini G., Schiavo N., Di Martino A., Polato P., Triban C., Callegaro L., Toffano G., Leon A. Evidence for a physiological role of nerve growth factor in the central nervous system of neonatal rats. Neuron. 1989 Sep;3(3):267–273. doi: 10.1016/0896-6273(89)90251-1. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES