Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Apr;73(4):1149–1153. doi: 10.1073/pnas.73.4.1149

Hydrolytic stability of helical RNA: a selective advantage for the natural 3',5'-bond.

D A Usher, A H McHale
PMCID: PMC430218  PMID: 1063396

Abstract

Dodecaadenylic acid containing a single 2', 5'-linkage at a defined position was formed by the coupling of two hexamers on a poly(U) template at 2 degrees. The rate of hydrolysis of this dodecamer was compared with that of a dodecamer that contained only the natural 3', 5'-linkages. At 40 degrees, in 1 M aqueous ethylenediamine at pH 8 in the absence of poly(U), both dodecamers hydrolyzed at comparable rates, but the addition of two equivalents of poly(U) caused a 7-fold increase in the initial rate of hydrolysis of the oligomer containing the 2', 5'-bond, and a 5-fold decrease in the initial rate of hydrolysis of the natural oligomer. When the oligomers are fully constrained in helical form, the ratio of the rates of cleavage of one 2', 5'-bond to one 3', 5'-bond under these conditions is probably about 900:1. The use of the 3', 5'-bond, in combination with a right-handed helix, appears to have had a large selective advantage over the use of the 2', 5'-bond for the storage of genetic information.

Full text

PDF
1153

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnott S., Bond P. J. Structures for Poly(U)-poly(A)-poly(U)triple stranded polynucleotides. Nat New Biol. 1973 Jul 25;244(134):99–101. doi: 10.1038/newbio244099a0. [DOI] [PubMed] [Google Scholar]
  2. BEERS R. F., Jr Hydrolysis of polyadenylic acid by pancreatic ribonuclease. J Biol Chem. 1960 Aug;235:2393–2398. [PubMed] [Google Scholar]
  3. Blake R. D., Fresco J. R. Polynucleotides. XI. Thermodynamics of (A) N -2(U) infinity from the dependence of T m N on oligomer length. Biopolymers. 1973 Apr;12(4):775–786. doi: 10.1002/bip.1973.360120407. [DOI] [PubMed] [Google Scholar]
  4. Borer P. N., Kan L. S., Ts'o P. O. Conformation and interaction of short nucleic acid double-stranded helices. I. Proton magnetic resonance studies on the nonexchangeable protons of ribosyl ApApGpCpUpU. Biochemistry. 1975 Nov 4;14(22):4847–4863. doi: 10.1021/bi00693a012. [DOI] [PubMed] [Google Scholar]
  5. Egami F., Takahashi K., Uchida T. Ribonucleases in taka-diastase: properties, chemical nature, and applications. Prog Nucleic Acid Res Mol Biol. 1964;3:59–101. doi: 10.1016/s0079-6603(08)60739-4. [DOI] [PubMed] [Google Scholar]
  6. Kondo N. S., Holmes H. M., Stempel L. M., Ts'o O. P. Influence of the phosphodiester linkage (3'-5', 2'-5', and 5'-5') on the conformation of dinucleoside monophosphate. Biochemistry. 1970 Sep 1;9(18):3479–3498. doi: 10.1021/bi00820a002. [DOI] [PubMed] [Google Scholar]
  7. LANE B. G., BUTLER G. C. The exceptional resistance of certain oligoribonucleotides to alkaline degradation. Biochim Biophys Acta. 1959 May;33(1):281–283. doi: 10.1016/0006-3002(59)90539-6. [DOI] [PubMed] [Google Scholar]
  8. LIPSETT M. N., HEPPEP L. A., BRADLEY D. F. Complex formation between oligonucleotides and polymers. J Biol Chem. 1961 Mar;236:857–863. [PubMed] [Google Scholar]
  9. Michelson A. M., Monny C. Polynucleotides. X. Oligonucleotides and their association with polynucleotides. Biochim Biophys Acta. 1967 Nov 21;149(1):107–126. doi: 10.1016/0005-2787(67)90695-8. [DOI] [PubMed] [Google Scholar]
  10. Newton M. D. A model conformational study of nucleic acid phosphate ester bonds. The torsional potential of dimethyl phosphate monoanion. J Am Chem Soc. 1973 Jan 10;95(1):256–258. doi: 10.1021/ja00782a055. [DOI] [PubMed] [Google Scholar]
  11. Pearson R. L., Weiss J. F., Kelmers A. D. Improved separation of transfer RNA's on polychlorotrifuoroethylene-supported reversed-phase chromatography columns. Biochim Biophys Acta. 1971 Feb 11;228(3):770–774. doi: 10.1016/0005-2787(71)90748-9. [DOI] [PubMed] [Google Scholar]
  12. Perahia D., Pullman B., Saran A. Molecular orbital calculations on the conformation of nucleic acids and their constituents. IX. The geometry of the phosphate group: key to the conformation of polynucleotides? Biochim Biophys Acta. 1974 Mar 27;340(3):299–313. doi: 10.1016/0005-2787(74)90275-5. [DOI] [PubMed] [Google Scholar]
  13. RUSHIZKY G. W., SOBER H. A. Studies on the specificity of ribonuclease T2. J Biol Chem. 1963 Jan;238:371–376. [PubMed] [Google Scholar]
  14. Renz M., Lohrmann R., Orgel L. E. Catalysts for the polymerization of adenosine cyclic 2',3'-phosphate on a poly (U) template. Biochim Biophys Acta. 1971 Jul 29;240(4):463–471. doi: 10.1016/0005-2787(71)90703-9. [DOI] [PubMed] [Google Scholar]
  15. Tazawa I., Tazawa S., Stempel L. M., Ts'o P. O. L'adenylyl-(3'-5')-L-adenosine and L-adenylyl-(2'-5')-L-adenosine. Biochemistry. 1970 Sep 1;9(18):3499–3514. doi: 10.1021/bi00820a003. [DOI] [PubMed] [Google Scholar]
  16. Usher D. A. On the mechanism of ribonuclease action. Proc Natl Acad Sci U S A. 1969 Mar;62(3):661–667. doi: 10.1073/pnas.62.3.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Usher D. A. RNA double helix and the evolution of the 3',5' linkage. Nat New Biol. 1972 Feb 16;235(59):207–208. doi: 10.1038/newbio235207a0. [DOI] [PubMed] [Google Scholar]
  18. Usher D. A., Richardson D. I., Jr, Oakenfull D. G. Models of ribonuclease action. II. Specific acid, specific base, and neutral pathways for hydrolysis of a nucleotide diester analog. J Am Chem Soc. 1970 Jul 29;92(15):4699–4712. doi: 10.1021/ja00718a037. [DOI] [PubMed] [Google Scholar]
  19. Walker G. C., Uhlenbeck O. C., Bedows E., Gumport R. I. T4-induced RNA ligase joins single-stranded oligoribonucleotides. Proc Natl Acad Sci U S A. 1975 Jan;72(1):122–126. doi: 10.1073/pnas.72.1.122. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES