Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 May;73(5):1581–1585. doi: 10.1073/pnas.73.5.1581

Nuclear magnetic resonance study of heme-heme interaction in hemoglobin M Milwaukee: implications concerning the mechanism of cooperative ligand binding in normal hemoglobin.

L W Fung, A P Minton, C Ho
PMCID: PMC430342  PMID: 1064027

Abstract

Hemoglobin M Milwaukee (beta 67E11 val leads to Glu) is a naturally occurring valency hybrid containing two permanently oxidized hemes in the beta-chains. In this mutant, the two abnormal beta-chains cannot combine with oxygen, whereas the two alpha-chains are normal and can combine with oxygen cooperatively with a Hill coefficient of approximately 1.3. High-resolution proton nuclear magnetic resonance spectroscopy at 250 MHz has been used to investigate the hyperfine shifted resonances of the abnormal ferric beta-chains of Hb M Milwaukee over the spectral region from -30 to -60 parts per million from water at pD 7 and 30 degrees.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin J. M. Structure and function of haemoglobin. Prog Biophys Mol Biol. 1975;29(3):225–320. doi: 10.1016/0079-6107(76)90024-9. [DOI] [PubMed] [Google Scholar]
  2. Banerjee R., Cassoly R. Oxygen equilibria of human hemoglobin valency hybrids. Discussion on the intrinsic properties of alpha and beta chains in the native protein. J Mol Biol. 1969 Jun 14;42(2):351–361. doi: 10.1016/0022-2836(69)90048-5. [DOI] [PubMed] [Google Scholar]
  3. Berman M., Benesch R., Benesch R. E. The removal of organic phosphates from hemoglobin. Arch Biochem Biophys. 1971 Jul;145(1):236–239. doi: 10.1016/0003-9861(71)90031-2. [DOI] [PubMed] [Google Scholar]
  4. Brunori M., Amiconi G., Antonini E., Wyman J. Artificial intermediates in the reaction of haemoglobin. Functional and conformational properties of the cyanmet intermediates. J Mol Biol. 1970 Apr 28;49(2):461–471. doi: 10.1016/0022-2836(70)90257-3. [DOI] [PubMed] [Google Scholar]
  5. Byckova V., Wajcman H., Labie D., Travers F. Hemoglobin M Saskatoon: further data on biophysics and oxygen equilibrium. Biochim Biophys Acta. 1971 Jul 25;243(1):117–125. doi: 10.1016/0005-2795(71)90045-6. [DOI] [PubMed] [Google Scholar]
  6. Cassoly R., Gibson Q. H., Ogawa S., Shulman R. G. Effects of phosphate upon CO binding kinetics and NMR spectra of hemoglobin valency hybrids. Biochem Biophys Res Commun. 1971 Sep;44(5):1015–1021. doi: 10.1016/s0006-291x(71)80187-0. [DOI] [PubMed] [Google Scholar]
  7. Enoki Y., Tomita S. Oxygen equilibria of half cyanomet hybrids of human and canine haemoglobins. J Mol Biol. 1968 Feb 28;32(1):121–134. doi: 10.1016/0022-2836(68)90150-2. [DOI] [PubMed] [Google Scholar]
  8. Fermi G. Three-dimensional fourier synthesis of human deoxyhaemoglobin at 2-5 A resolution: refinement of the atomic model. J Mol Biol. 1975 Sep 15;97(2):237–256. doi: 10.1016/s0022-2836(75)80037-4. [DOI] [PubMed] [Google Scholar]
  9. GERALD P. S., EFRON M. L. Chemical studies of several varieties of Hb M. Proc Natl Acad Sci U S A. 1961 Nov 15;47:1758–1767. doi: 10.1073/pnas.47.11.1758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gibson Q. H., Heller P., Yakulis V. The rate of reaction of carbon monoxide with hemoglobins M. J Biol Chem. 1966 Apr 10;241(7):1650–1651. [PubMed] [Google Scholar]
  11. Haber J. E., Koshland D. E., Jr The effect of 2,3-diphosphoglyceric acid on the changes in - interactions in hemoglobin during oxygenation. J Biol Chem. 1971 Dec 25;246(24):7790–7793. [PubMed] [Google Scholar]
  12. Hayashi A., Suzuki T., Shimizu A., Imai K., Morimoto H. Some observations on the physicochemical properties of hemoglobin M-Hyde Park. Arch Biochem Biophys. 1968 Jun;125(3):895–901. doi: 10.1016/0003-9861(68)90528-6. [DOI] [PubMed] [Google Scholar]
  13. Hayashi A., Suzuki T., Shimizu A., Yamamura Y. Properties of hemoglobin M. Unequivalent nature of the alpha and beta subunits in the hemoglobin molecule. Biochim Biophys Acta. 1968 Oct 21;168(2):262–273. doi: 10.1016/0005-2795(68)90149-9. [DOI] [PubMed] [Google Scholar]
  14. Ho C., Lindstrom T. R., Baldassare J. J., Breen J. J. Magnetic resonance studies of human hemoglobins and their implications to the structure-function relationships in human normal and abnormal hemoglobins. Ann N Y Acad Sci. 1973 Dec 31;222:21–39. doi: 10.1111/j.1749-6632.1973.tb15250.x. [DOI] [PubMed] [Google Scholar]
  15. Koshland D. E., Jr, Némethy G., Filmer D. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry. 1966 Jan;5(1):365–385. doi: 10.1021/bi00865a047. [DOI] [PubMed] [Google Scholar]
  16. Kurland R. J., Davis D. G., Ho C. Paramagnetic proton nuclear magnetic resonance shifts of metmyoglobin, methemoglobin, and hemin derivatives. J Am Chem Soc. 1968 May 8;90(10):2700–2701. doi: 10.1021/ja01012a048. [DOI] [PubMed] [Google Scholar]
  17. Kurland R. J., Little R. G., Davis D. G., Ho C. Proton magnetic resonance study of high- and low-spin hemin derivatives. Biochemistry. 1971 Jun 8;10(12):2237–2246. doi: 10.1021/bi00788a009. [DOI] [PubMed] [Google Scholar]
  18. Lindstrom T. R., Ho C. Functional nonequivalence of and hemes in human adult hemoglobin. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1707–1710. doi: 10.1073/pnas.69.7.1707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lindstrom T. R., Ho C., Pisciotta A. V. Nuclear magnetic resonance studies of haemoglobin M Milwaukee. Nat New Biol. 1972 Jun 28;237(78):263–264. doi: 10.1038/newbio237263a0. [DOI] [PubMed] [Google Scholar]
  20. MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
  21. Mayer A., Ogawa S., Schulman R. G., Gersonde K. High-resolution proton nuclear magnetic resonance studies of the quaternary state of hemoglobin M Iwate. J Mol Biol. 1973 Dec 5;81(2):187–197. doi: 10.1016/0022-2836(73)90188-5. [DOI] [PubMed] [Google Scholar]
  22. McConnell H. M., Ogawa S., Horwitz A. Spin-labelled haemoglobin and the haem-haem interaction. Nature. 1968 Nov 23;220(5169):787–788. doi: 10.1038/220787a0. [DOI] [PubMed] [Google Scholar]
  23. Minton A. P. Oxygen binding in cyanmet hybrid and normal hemoglobins: applicability of sequential and two-state concerted models. Science. 1974 May 3;184(4136):577–579. doi: 10.1126/science.184.4136.577. [DOI] [PubMed] [Google Scholar]
  24. Nishikura K., Sugita Y., Nagai M., Yoneyama Y. Ethylisocyanide equilibria of hemoglobins M Iwate, M Boston, M Hyde Park, M Saskatoon, and M Milwaukee-I in half-ferric and fully reduced states. J Biol Chem. 1975 Sep 10;250(17):6679–6685. [PubMed] [Google Scholar]
  25. Ogata R. T., McConnell H. M. States of hemoglobin in solution. Biochemistry. 1972 Dec 5;11(25):4792–4799. doi: 10.1021/bi00775a024. [DOI] [PubMed] [Google Scholar]
  26. Ogawa S., Shulman R. G. High resolution nuclear magnetic resonance spectra of hemoglobin. 3. The half-ligated state and allosteric interactions. J Mol Biol. 1972 Sep 28;70(2):315–336. doi: 10.1016/0022-2836(72)90542-6. [DOI] [PubMed] [Google Scholar]
  27. Ogawa S., Shulman R. G. Observation of allosteric transition in hemoglobin. Biochem Biophys Res Commun. 1971 Jan 8;42(1):9–15. doi: 10.1016/0006-291x(71)90354-8. [DOI] [PubMed] [Google Scholar]
  28. PISCIOTTA A. V., EBBE S. N., HINZ J. E. Clinical and laboratory features of two variants of methemoglobin M disease. J Lab Clin Med. 1959 Jul;54(1):73–87. [PubMed] [Google Scholar]
  29. Perutz M. F., Pulsinelli P. D., Ranney H. M. Structure and subunit interaction of haemoglobin M Milwaukee. Nat New Biol. 1972 Jun 28;237(78):259–263. doi: 10.1038/newbio237259a0. [DOI] [PubMed] [Google Scholar]
  30. Perutz M. F. Stereochemistry of cooperative effects in haemoglobin. Nature. 1970 Nov 21;228(5273):726–739. doi: 10.1038/228726a0. [DOI] [PubMed] [Google Scholar]
  31. Perutz M. F., TenEyck L. F. Stereochemistry of cooperative effects in hemoglobin. Cold Spring Harb Symp Quant Biol. 1972;36:295–310. doi: 10.1101/sqb.1972.036.01.040. [DOI] [PubMed] [Google Scholar]
  32. Ranney H. M., Nagel R. L., Heller P., Udem L. Oxygen equilibrium of hemoglobin M-Hyde Park. Biochim Biophys Acta. 1968 May 6;160(1):112–115. doi: 10.1016/0005-2795(68)90070-6. [DOI] [PubMed] [Google Scholar]
  33. Shulman R. G., Hopfield J. J., Ogawa S. Allosteric interpretation of haemoglobin properties. Q Rev Biophys. 1975 Jul;8(3):325–420. doi: 10.1017/s0033583500001840. [DOI] [PubMed] [Google Scholar]
  34. Shulman R. G., Ogawa S., Mayer A., Castillo C. L. High-resolution proton NMR studies of low affinity hemoglobins. Ann N Y Acad Sci. 1973 Dec 31;222:9–20. doi: 10.1111/j.1749-6632.1973.tb15249.x. [DOI] [PubMed] [Google Scholar]
  35. Shulman R. G., Ogawa S., Wüthrich K., Yamane T., Peisach J., Blumberg W. E. The absence of "heme-heme" interactions in hemoglobin. Science. 1969 Jul 18;165(3890):251–257. doi: 10.1126/science.165.3890.251. [DOI] [PubMed] [Google Scholar]
  36. Suzuki T., Hayashi A., Yamamura Y., Enoki Y., Tyuma I. Functional abnormality of hemoglobin M-Osaka. Biochem Biophys Res Commun. 1965 Jun 9;19(6):691–695. doi: 10.1016/0006-291x(65)90312-8. [DOI] [PubMed] [Google Scholar]
  37. Udem L., Ranney H. M., Bunn H. F., Pisciotta A. Some observations on the properties of hemoglobin M Milwaukee-1. J Mol Biol. 1970 Mar;48(3):489–498. doi: 10.1016/0022-2836(70)90060-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES