Skip to main content
NIHPA Author Manuscripts logoLink to NIHPA Author Manuscripts
. Author manuscript; available in PMC: 2015 Jan 27.
Published in final edited form as: Front Biosci (Landmark Ed). 2014 Jan 1;19:605–618. doi: 10.2741/4230

The breast cancer susceptibility genes (BRCA) in breast and ovarian cancers

Arindam Paul 1, Soumen Paul 1
PMCID: PMC4307936  NIHMSID: NIHMS656766  PMID: 24389207

Abstract

The Breast Cancer Susceptibility Genes, BRCA1 and BRCA2, are the dynamic regulators of genomic integrity. Inherited mutations in these genes are associated with the development of cancer in multiple organs including the breast and ovary. Mutations of BRCA1/2 genes greatly increase lifetime risk to develop breast and ovarian cancer and these mutations are frequently observed in hereditary breast and ovarian cancers. In addition, misregulation and altered expressions of BRCA1/2 proteins potentiate sporadic forms of breast cancer. In particular, both genes contribute to DNA repair and transcriptional regulation in response to DNA damage. Thus, deficiencies of BRCA1/2 functions lead to the accumulation of genetic alterations and ultimately influence the development of cancer. Studies since identification of both BRCA1 and BRCA2 have provided strong evidences for their tumor suppressor activities specifically for breast and ovarian cancer and this article aims to review the current state of knowledge regarding the BRCAs and associated cancer risk.

Keywords: BRCA1, BRCA2, Breast Cancer, Ovarian Cancer, Review

2. INTRODUCTION

BRCA1 and BRCA2 are two distinct tumor suppressor genes and they play an integral role in response to cellular stress via the activation of DNA repair processes (15). Germline mutations of BRCA genes predispose individuals to develop breast and ovarian cancer (68) and also incline the risk to develop other cancer types including pancreatic, and prostate cancer (913). These observations indicated that BRCA genes might function in tissue specific manners, at least in the breast and the ovary. However, detailed functional studies of BRCA1/2 have indicated that these proteins play role in many different organs to control chromatin remodeling, transcription control, cell cycle regulation, and DNA repair processes (6). They were found to interact with many DNA repair proteins (68, 14) and involved in Fanconi anaemia, a rare inherited disease caused by genetic defects in DNA repair proteins and characterized by genomic instability with increased cancer risk (15). Thus, the regulatory roles of BRCA1/2 genes to control cell cycle checkpoints and DNA repair mechanisms are highly correlated with their tumor suppressor activites, although, the reason for development of breast and ovarian tissue specific tumorigenesis due to germline mutations of the BRCA1/2 is poorly understood (14, 16).

3. THE BRCA1 PROTEIN

The BRCA1 gene was cloned in 1994 and located in human chromosome 17q21 (17). In human, the full length BRCA1 protein is encoded by 24 exons and several studies have investigated to understand the functional role of BRCA1 (1722). The BRCA1 is revealed as a multi-functional protein and known to interact with different protein partners in various cellular compartments to play essential roles in diverse cellular pathways such as DNA damage repair, cell-cycle arrest, apoptosis, genetic instability, transcriptional activation, and also in tumorigenesis (2022). Mutations in BRCA1 are associated with increased lifetime risk of breast and ovarian cancers (1719). In fact, many of the well-recognized risk factors and risk modifiers of tumorigenesis appear to operate similarly in BRCA mutation carriers (14).

In cancer patients, mutations in BRCA1 most frequently observed in three domains (23) called N-terminal RING domain encoded by exons 2–7 (amino acids 1-109), coding regions of exons 11–13, and BRCA1 C-terminus encoded by exons 16–24 (amino acids 1650–1863) or BRCT domain (23). These three domains are highly important not only for interaction with various partner proteins but also with BRCA1 subcellular localization. Structures of RING and BRCT domains have been solved (2428), however, these two domains cover only a small part of the full length BRCA1 protein whereas exons 11–13 encode majority of BRCA1 protein and the structure of this region is still unknown.

The RING domain of BRCA1 consists of a RING finger motif correspond to residues 24–64, which is a highly conserved domain that plays key role in ubiquitination pathway. This domain interacts with another RING domain containing protein BARD1 (BRCA1 associated RING domain protein 1) (29). Yeast two-hybrid studies indicated that the RING finger motifs of both BRCA1 and BARD1 are required for their interaction (30) and the heteromeric complex identified as discrete nuclear foci on damaged, replicating DNA structures during S phase of cell cycle progression (31). The RING finger motif is responsible for the E3-ubiquitin ligase activity of BRCA1 (32) and the ubiquitin ligase activity of BRCA1 is dramatically increased by formation of the BRCA1/BARD1 heterodimer (33). Both BRCA1 and BARD1 knockout mice showed embryonic lethality (3437) and BARD1 mutations are also prevalent in hereditary breast and ovarian cancers (3840).

Exons 11–13 contain a large percentage of the clinically relevant mutations and highly important for the tumor suppressor function of BRCA1 (41). This middle region of BRCA1 is known to interact with several proteins involved in a wide range of cellular pathways such as transcription, DNA repair, and cell cycle progression and the interacting partners include retinoblastoma protein (Rb), c-Myc, RAD50, and RAD51 (4, 21). Exon 11 contains two nuclear localization sequences (NLS) and encodes nearly 60% of the BRCA1 protein (40, 42, 43). The NLS sequences are located in between amino acids 501–507 and 607–614 and facilitate to interact with importin-alpha, which mediates BRCA1 transport from the cytosol to the nucleus (44). Mutations of the NLSs result in a shift toward cytosolic localization of BRCA1 and subsequent increase in unrepaired mutations and chromosomal abnormalities in malignancies.

The C-terminal (BRCT) domain is spanned in between amino acids 1650–1863 and responsible for interactions with substrates of DNA damage-activated kinases such as ATM and ATR (45). This region of BRCA1 known to interact with various transcription regulators such as p53 and BACH1 as well as DNA damage repair proteins such as CtIP and CCDC98 (4650). Multiple mutations in the BRCT domain, specifically mutation of hydrophobic residues destroy the ability to interact with phosphoproteins and recently reviewed extensively by Clark et. al. (23). These mutations have been observed in breast and ovarian cancers and indicate the involvement of BRCA1 C-terminus in tumor suppression (17, 19, 51, 52). The BRCT domain also reported to mediate DNA binding activity and interaction with other proteins (53).

Interestingly, BRCA1 was discovered as nuclear phosphoprotein in normal cells and in tumor cell lines from tissues other than breast and ovary, whereas, predominant cytoplasmic location of BRCA1 has been observed in the breast and ovarian cancer cells (54). However, several other studies also claimed BRCA1 localization mainly in the nuclei of both normal and cancer cells (43, 55, 56). In addition, studies also indicated that BRCA1 was a 190 kDa secreted tumor suppressor rather than 220–230 kDa proteins (57, 58). These opposing observations overall indicated the presence of functionally different alternatively spliced transcripts of BRCA1. In fact, alternative splicing of BRCA1 is very common and highly related to its function during tumorigenesis (59). A large number of splice variants of BRCA1 have been found in different tissues and cell types, although functional importance of majority of them are still unknown (60). Xu et. al. first indicated the presence of two possible exon 1 (exon 1a and 1b) representing two distinct BRCA1 transcripts (61). Although both of these transcripts are expressed in various tissues, the transcript with exon 1a are expressed in mammary glands and the transcript with exon 1b found in the placenta indicating possible tissue-specific distributions of BRCA1 transcript variants. Subsequent studies revealed that the wild type, BRCA1 Δ(9,10), BRCA1 Δ11b, BRCA1Δ (9,10,11b), BRCA1-IRIS, and BRCA1 with exon 13A are highly abundant in various tissues and considered as the major BRCA1 transcript variants (6, 43, 62, 63). Recently, expression of BRCA1 Δ (14,15) splice variant has been linked with radiation-induced DNA double-strand break (DSB) repair in MCF-7 breast cancer cells (64).

4. FUNCTIONAL DIVERSITY OF BRCA1

BRCA1 regulates diverse cellular functions at different cellular compartments. During S-phase of the cell cycle or genotoxic stress, phosphorylated BRCA1 translocate to the nucleous and regulates DNA damaged repair processes, DNA replication, gene transactivation, and also X chromosome inactivation (65, 66). Analysis of BRCA1 protein level revealed that expression of BRCA1 remains low at G0 and G1 phases (56, 67), but increases from G1/S- phase checkpoint and maintained throughout S, G2, and M phase (68). BRCA1 undergoes hyperphosphorylation during S-phase, whereas dephosphorylated after the M phase (56, 67). DNA damage induces nuclear translocation of BRCA1 and become phosphorylated through DNA damage-activated kinases such as ATM, ATR, and Chk1/Chk2 (6971). Nuclear translocation of BRCA1 is occurred due to the presence of two NLSs in exon 11 (44). An alternative pathway of BRCA1 nuclear localization is mediated through BARD1 as binding partner via the interaction through RING domain (72) and suggested possible mechanism of nuclear localization of the alternatively spliced variants of BRCA1 with spliced out exon 11 (73). Mechanistically, the N-terminus of BRCA1 also contains two nuclear export sequences (NES) that facilitate CRM1 (chromosome region maintenance protein 1) -mediated export of BRCA1 from the nucleous (7476). BARD1 directly masks the NES signal of the BRCA1 and utilizes its own NLS for efficient import and nuclear localization of BRCA1. In addition, BRAP2 (BRCA1 binding protein 2) binds BRCA1 NLSs to facilitate cytoplasmic retention by disrupting interaction with nulear import receptor importin-alpha (77, 78).

In cytoplasm, BRCA1 regulates mitotic cell division, cytoskeletal rearrangement, apoptosis, and mitochondrial genome repair (21, 79, 80). The E3 ubiquitin ligase activity of BRCA1/BARD1 has a regulatory role in centrosome duplication and assembly of the mitotic spindle pole (8183). In addition, BRCA1 has been implicated in the mitotic spindle checkpoint (84) and recently Bordie et. al. showed that mutation of the NES, or treatment of cells with leptomycin B, a CRM1 export inhibitor, caused a reduction in BRCA1 transport to the centrosome as well as its overall rate of exchange and retention (75). BRCA1 has also been reported to ubiquitinate another centrosomal protein, nucleophosmin (NPM1)(85) which is important for centrosome duplication (86). In addition, Bcl-2 and AKT1 have been reported to redirect BRCA1 to mitochondria and endoplasmic reticulum (87, 88). Thus, the translocation of BRCA1 between cellular compartments is common and highly related to its function in both normal and cancer cells.

The best-known function of BRCA1 is in DNA repair pathway and multiple, clinically observed, missense mutations arising throughout the entire BRCA1 gene were found to be nonfunctional in assays of DNA double strand break (DSB) repair (8992). These observations indicate a link of efficient repair of DSB by BRCA1 to its tumor suppression activities. In fact, BRCA1 mutation carriers are relatively hypersensitive to platinum-based therapies (22, 93, 94) and tumor cells expressing high levels of BRCA1 are resistant to both ionizing radiation (IR) and chemotherapeutic agents (95, 96). BRCA1 contains a domain called the serine cluster domain located in exons 11–13 and this region contains several putative phosphorylation sites. ATM, ATR, and checkpoint kinases phosphorylate BRCA1 upon DNA damage (71, 97, 98) and hyperphosphorylated BRCA1 rapidly relocated to the sites of replication to recruit and organize multiple distinct protein complexes that recognize and repair damaged DNA and activate cell cycle checkpoints (4, 91, 92, 99). Serine cluster domains are common in ATM/ATR targets (100) and serine residues 988, 1189, 1387, 1423, 1457, 1524, and 1542 can all be phosphorylated by ATM, ATR, Chk1, or Chk2 (6971, 92, 101, 102). Mutation of these serine residues have been observed clinically, and may affect localization of BRCA1 to the sites of damaged DNA and subsequent repair function (23). To facilitate DNA repair, BRCA1 recruits the RAD50-MREII-NBS1 complex to sites of DNA DSBs and this interaction requires BRCA1 exon 11 (103). BRCA1 also interact with PALB2, which acts as a scaffold to form a protein complex including BRCA1 and BRCA2 (Breast Cancer Susceptibility Gene 2) that involved in homologous recombination (HR) during DNA repair (104). In addition, BRCA1 is also known to interact with RAD51, another DNA repair protein involved in HR (4). Thus, the BRCA1 association with RAD50, PALB2, and RAD51 strongly suggests a role in both non-homologous end joining (NHEJ) and HR processes of DNA repair. Beside that, both BRCA1 and BARD1 have been detected at cellular mitochondria indicating a possible role of BRCA1 to regulate mitochondrial DNA repair also (105107).

BRCA1 has been linked to cellular growth and proliferation and knockdown of BRCA1 accelerated the growth of normal and malignant mammary cells predominantly the breast and ovarian cancer cells (108, 109). In addition, introduction of wild-type BRCA1 into tumor cells inhibited cell proliferation (58). Study by Aprelikova et. al. showed that the BRCA1-mediated growth inhibition depends on Rb protein (110), a well-known tumor suppressor that controls growth by regulating progression through the cell cycle (110, 111). Exon 11 of BRCA1 known to interact with Rb and cells with wild-type Rb were sensitive to BRCA1-induced growth arrest (110). The transcription factor c-Myc also known to interact with BRCA1 (via exon 11) and the BRCA1 has two c-Myc binding sites (112, 113). The transformation activity of c-Myc/Ras and the transcriptional activity of Myc is inhibited by BRCA1 expression (113) indicating that suppression of the oncogenic activities of c-Myc may be associated with the tumor suppressor activity of BRCA1. BRCA1 also reported to interact with RHAMM (receptor for hyaluronan-mediated mobility), which regulate epithelial apicobasal polarization and ubiquitinated via the E3 ubiquitin ligase activity of BRCA1/BARD1 complex (114). RHAMM is linked to cancer metastasis and thus, indicated a yet to explore mechanism of BRCA1 tumor suppression activity specifically for sporadic breast cancer (115).

Since BRCA1 interacts with multiple transcription factors such as p53, ER-a, c-Myc, STAT1, CtIP, and ZBRK1 as well as with RNA polymerase II, it is obvious that BRCA1 plays a critical role in transcriptional regulation (113, 116122). In fact, cancer-associated point mutations of BRCA1 disrupt its interaction with RNA polymerase II indicating BRCA1 is a part of core transcriptional machinery (123). Recent studies indicated that BRCA1 autoregulates its own transription to maintain genome integrity in response to genotoxic stress (124, 125). BRCA1 also interacts with the RbAp46 (retinoblastoma suppressor associated protein), which is a component of the histone modifying and remodeling complexes (126) and BRCA1 is also found as a component of the human SWI/SNF-related chromatin-remodeling complex (127). Importantly, the BRCA1 interaction with different transcription factors occurred through the regions distributed both in N and C terminus. The transciption factors p53 and STAT1 interact through the N-terminal animo acid sequences 240–800, whereas, CtIP is known to interact with amino acids 1602–1863 in the C-terminus of BRCA1 (116, 118120). Thus, it is clear that BRCA1 also functions as a transcriptional coactivator or corepressor representig a critical component of its overall role in tumor suppression, however, little is known about its target genes except for MAD2, ANG1, and BRCA1 itself (84, 124, 128, 129).

5. THE BRCA2

The BRCA2 gene was identified by Wooster et. al. in 1994 (130) and the gene contains 27 exons with eight internally repeated sequence called BRC motif, which considered to be the major domain to interact with RAD51 (131134). Although there is some similarity between the exon structures of BRCA1 and BRCA2, there is no significant sequence homology between them (135). Nuclear localization signals in human BRCA2 have been identified (136) and colocalize with BRCA1 in subnuclear foci in somatic cells (135). Like BRCA1, BRCA2 is also important as a transcriptional co-regulator (8). BRCA2 is also known to interact with SMAD3 to form a complex that co-activate Smad3-dependent transcriptional activation of plasminogen activator inhibitor-1 (PAI-1) and cooperates with histone acetyltransferases in androgen receptor-mediated transcription (137, 138).

The structure of the BRCA2 C-terminal domain has been solved and implicated to have DNA binding property (139). A large number of tumor derived mutations were observed in the BRCA2 C-terminal domain (65). The BRCA2, like BRCA1, colocalizes with RAD51 during meiosis on chromosome axes (135). The association of BRCA2 with RAD51 indicated the involvement of BRCA2 in the repair of DNA damage by HR pathway (65). Consistently, cells from BRCA2 mutant mice showed inefficient and aberrant chromosomal structures (3, 140). All these findings suggested tumor suppressor role of BRCA2 via the maintenance of genome stability.

6. BRCA MUTATIONS AND CANCER RISK

Mutations in the BRCA1 and BRCA2 genes are notably associated with inherited breast and ovarian cancers and nearly 30–40% of sporadic malignancies are associated with loss of BRCA1 expression (141, 142). The lifetime risk of breast cancer in BRCA1- and BRCA2- mutation carriers is 45–80% (143, 144) and for ovarian cancer, the lifetime risk is 45–60% and 11–35% for BRCA1-and BRCA2 -mutation carriers, respectively(143145). BRCA mutation carriers are also at risk for other malignancies such as fallopian tube cancer, melanoma, endometrial, pancreatic, prostate, and colorectal cancer (11, 146150). Compared to nonhereditary breast cancer patients, nearly 80% of BRCA1- mutation carriers are diagnosed with breast cancer prior to menopause (146, 151153). In fact, for women with BRCA mutations, the risk of both breast and ovarian cancer development increased about 10–15 % in each decade after the age of 40 years (143). Additionally, BRCA1-mutation carriers develop ovarian cancer at a younger age than BRCA2-mutation carriers and sporadic cases (154).

In breast cancer, BRCA1 mutation predominantly observed in basal-like subtype (155157) and nearly 70% of BRCA1-mutated breast cancers express basal cytokeratins and lack expression of estrogen receptor (ER) (156). BRCA2- associated breast tumors are predominantly ER positive and p53 negative whereas BRCA1-associated breast tumors are more often triple negative i.e. ER, progesterone receptor (PR), and epidermal growth factor 2 (HER2) negative and p53 positive (146, 158160). Moreover, sporadic breast cancers with loss of BRCA1 expression also have a strong tendency to be of the basal-like phenotype (108, 161). On the other hand, tumors with functional BRCA1 are predominantly luminal type and associated with more indolent clinical courses, responsiveness to endocrine therapies, and improved survival (73, 162). Taken together, these findings suggest that loss of BRCA1 expression and/or function has a causal role in the development of the basal-like phenotype (14). A mechanistic understanding of how BRCA1 dysfunction contributes to the generation and pathogenesis of basal-like breast cancers is currently lacking but important to understand the molecular events that initiate basal-like malignancies (14).

7. TARGETED THERAPIES FOR BRCA-DEFICIENT CANCER

There is no single management strategy in reducing the risk of breast and ovarian cancer for BRCA mutation carriers and these issues have been reviewed recently in details by Bougie and Weberpals (163). The decision-making processes such as surveillance, risk-reducing surgery, and/or chemoprevention are very complex and differ from patient to patient due to their age, family history of female breast, male breast, ovarian, prostate, and pancreatic cancer in the risk stratification model. Thus clinical managements of patients with BRCA mutation carriers are highly challenging. In fact, there are no standard guidelines for recommending BRCA1 or BRCA2 mutation testing. Although surveillance strategies like mammography and breast magnetic imaging is helpful for breast cancer but there is no effective screening strategy has been developed for ovarian cancer (163, 164). Treatment options often depend on risk-reducing surgical procedures such as bilateral mastectomy and salpingo-oophorectomy (165). Chemopreventive strategies have been considered to reduce the risk of breast cancer only for high-risk women (i.e. women aged 35 years and older) and involve the use of selective estrogen receptor modulators such as Tamoxifen, Raloxifene and aromatase inhibitors, whereas oral contraceptives have been used for chemoprevention of hereditary ovarian cancer (163166).

Although the risk reducing surgical procedures are significantly protective for BRCA mutation carriers (167), targeted therapies for hereditary breast and ovarian cancer are highly desirable. In this regard, DNA defects, which are often necessary to develop tumourigenesis, also provide a therapeutically exploitable strategy when the cells become cancerous. Since BRCA1 deficiency leads to the deregulation of DNA repair pathways, tumor cells with BRCA1 deficiency are more vulnerable to DNA damaging agents such as platinum-based chemotherapeutics like Cisplatin and its derivative, Carboplatin (163, 165, 168). Inhibitors of Poly (ADP-ribose) polymerase (PARP), an enzyme critical in base excision repair and involved in the repair of single-stranded DNA breaks (SSBs), are also novel therapeutic option for the treatment of breast and ovarian cancers with defective BRCA function (169171). Since BRCA1/2-mutated or deficient malignancies have intrinsic defects in HR-mediated DNA damage repair, ancillary DNA repair pathways dependent on PARP become critical (172). Cells with nonfunctional or deficient BRCA1/2 leads to genomic instability when treated with PARP inhibitors (163). Clinical trials using PARP inhibitors, such as Olaparib and BSI-201, are currently ongoing and show clinical efficacy in the treatment of BRCA1/2 -associated breast, ovarian, and prostate cancers, as well as sporadic basal-like breast cancers (173176).

Recently, Stecklein et. al. showed that loss of heat-shock protein 90 (HSP90) function abolishes BRCA1-dependent DSB repair and that BRCA1-deficient cells are hypersensitive to 17-AAG (Tanespimycin) due to impaired G2/M checkpoint activation (177). The HSP90 protein regulate BRCA1 ubiquitination and proteasomal degradation and thus, inhibition of HSP90 resulted in compromised repair of ionizing radiation- and platinum-induced DNA damage. The HSP90 inhibition approach provides an opportunity to enhance sensitivity in refractory and/or resistant malignancies where BRCA1 is function is normal or even overexpressed (177).

8. NEW CHALLENGES

Loss of DNA repair mechanism promotes genetic instability and leads to tumorigenesis. However, defective DNA repair mechanisms alternatively provide cellular hypersensitivity to DNA damaging chemotherapeutic agents such as Cisplatin and Carboplatin as well as PARP inhibitors (154, 168, 178180). Recently, it has been recognized that restoration of BRCA1/2 functions due to secondary mutations of BRCA1/2 in BRCA1/2-mutated tumors can occur and leads to resistance to Cisplatin and PARP inhibitors (181184) (recently reviewed extensively by Dhillon and colleagues) (185). Several studies have suggested multiple mechanisms such as altered expression of drug transporters and cellular oxidative state (186), microhomology-mediated end-joining (187), and translesion synthesis (188) which can lead to this unexpected drug resistance. However, the detailed mechanism for acquisition of secondary BRCA1/2 mutations is still not clear. Thus, future studies are needed to explain this phenomenon and approaches may include the identification of a subset of BRCA1/2-expressing cells that may exist in the tumor prior to chemotherapy, mechanistic knowledge to understand the role of DNA repair in chemoresistance and generation of secondary BRCA1/2 mutations, as well as longer clinical studies to correlate secondary BRCA1/2 mutations with clinical outcomes. In addition, future research is also required to instigate drug sensitivity for the drug-resistant cancers with secondary BRCA1/2 mutations. In this regard, chemotherapeutic agents/PARP inhibitors in combination with proteasome inhibitors, CDK inhibitors, and HSP90 inhibitors provide an attractive approach since they are reported to inhibit RAD51 foci formation (189, 190) and successfully applied in Glioblastoma multiforme (GBM) (191). Moreover, the study by Stecklein et. al. also raise the possibility to treat drug resistant secondary BRCA1/2-mutated tumors by targeting HSP90 (177). Identification of novel strategies to prevent or overcome drug resistance in secondary BRCA1/2-mutated breast and ovarian cancer is a new challenge and success will improve patient survival immensely.

Acknowledgments

We sincerely apologize to the many scientists whose important contributions were not cited due to the focus of this review. This work is supported by NIH grants HD062546, HL104322, and HL106311.

References

  • 1.Moynahan ME, Chiu JW, Koller BH, Jasin M. Brca1 controls homology-directed DNA repair. Mol Cell. 1999;4(4):511–8. doi: 10.1016/s1097-2765(00)80202-6. http://dx.doi.org/10.1016/S1097-2765(00)80202-6. [DOI] [PubMed] [Google Scholar]
  • 2.Moynahan ME, Pierce AJ, Jasin M. BRCA2 is required for homology-directed repair of chromosomal breaks. Mol Cell. 2001;7(2):263–72. doi: 10.1016/s1097-2765(01)00174-5. http://dx.doi.org/10.1016/S1097-2765(01)00174-5. [DOI] [PubMed] [Google Scholar]
  • 3.Patel KJ, Yu VP, Lee H, Corcoran A, Thistlethwaite FC, Evans MJ, Colledge WH, Friedman LS, Ponder BA, Venkitaraman AR. Involvement of Brca2 in DNA repair. Mol Cell. 1998;1(3):347–57. doi: 10.1016/s1097-2765(00)80035-0. http://dx.doi.org/10.1016/S1097-2765(00)80035-0. [DOI] [PubMed] [Google Scholar]
  • 4.Scully R, Chen J, Plug A, Xiao Y, Weaver D, Feunteun J, Ashley T, Livingston DM. Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell. 1997;88(2):265–75. doi: 10.1016/s0092-8674(00)81847-4. http://dx.doi.org/10.1016/S0092-8674(00)81847-4. [DOI] [PubMed] [Google Scholar]
  • 5.Sharan SK, Morimatsu M, Albrecht U, Lim DS, Regel E, Dinh C, Sands A, Eichele G, Hasty P, Bradley A. Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature. 1997;386(6627):804–10. doi: 10.1038/386804a0. http://dx.doi.org/10.1038/386804a0. [DOI] [PubMed] [Google Scholar]
  • 6.Orban TI, Olah E. Emerging roles of BRCA1 alternative splicing. Mol Pathol. 2003;56(4):191–7. doi: 10.1136/mp.56.4.191. http://dx.doi.org/10.1136/mp.56.4.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Kerr P, Ashworth A. New complexities for BRCA1 and BRCA2. Curr Biol. 2001;11(16):R668–76. doi: 10.1016/s0960-9822(01)00389-x. [DOI] [PubMed] [Google Scholar]
  • 8.Welcsh PL, King MC. BRCA1 and BRCA2 and the genetics of breast and ovarian cancer. Hum Mol Genet. 2001;10(7):705–13. doi: 10.1093/hmg/10.7.705. http://dx.doi.org/10.1093/hmg/10.7.705. [DOI] [PubMed] [Google Scholar]
  • 9.Zweemer RP, van Diest PJ, Verheijen RH, Ryan A, Gille JJ, Sijmons RH, Jacobs IJ, Menko FH, Kenemans P. Molecular evidence linking primary cancer of the fallopian tube to BRCA1 germline mutations. Gynecol Oncol. 2000;76(1):45–50. doi: 10.1006/gyno.1999.5623. http://dx.doi.org/10.1006/gyno.1999.5623. [DOI] [PubMed] [Google Scholar]
  • 10.Aziz S, Kuperstein G, Rosen B, Cole D, Nedelcu R, McLaughlin J, Narod SA. A genetic epidemiological study of carcinoma of the fallopian tube. Gynecol Oncol. 2001;80(3):341–5. doi: 10.1006/gyno.2000.6095. http://dx.doi.org/10.1006/gyno.2000.6095. [DOI] [PubMed] [Google Scholar]
  • 11.Thompson D, Easton DF. Cancer Incidence in BRCA1 mutation carriers. J Natl Cancer Inst. 2002;94(18):1358–65. doi: 10.1093/jnci/94.18.1358. http://dx.doi.org/10.1093/jnci/94.18.1358. [DOI] [PubMed] [Google Scholar]
  • 12.Douglas JA, Levin AM, Zuhlke KA, Ray AM, Johnson GR, Lange EM, Wood DP, Cooney KA. Common variation in the BRCA1 gene and prostate cancer risk. Cancer Epidemiol Biomarkers Prev. 2007;16(7):1510–6. doi: 10.1158/1055-9965.EPI-07-0137. http://dx.doi.org/10.1158/1055-9965.EPI-07-0137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Gallagher DJ, Gaudet MM, Pal P, Kirchhoff T, Balistreri L, Vora K, Bhatia J, Stadler Z, Fine SW, Reuter V, Zelefsky M, Morris MJ, Scher HI, Klein RJ, Norton L, Eastham JA, Scardino PT, Robson ME, Offit K. Germline BRCA mutations denote a clinicopathologic subset of prostate cancer. Clin Cancer Res. 2010;16(7):2115–21. doi: 10.1158/1078-0432.CCR-09-2871. http://dx.doi.org/10.1158/1078-0432.CCR-09-2871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Stecklein SR, Jensen RA, Pal A. Genetic and epigenetic signatures of breast cancer subtypes. Front Biosci (Elite Ed) 2012;4:934–49. doi: 10.2741/E431. [DOI] [PubMed] [Google Scholar]
  • 15.Mirchandani KD, D’Andrea AD. The Fanconi anemia/BRCA pathway: a coordinator of cross-link repair. Exp Cell Res. 2006;312(14):2647–53. doi: 10.1016/j.yexcr.2006.06.014. http://dx.doi.org/10.1016/j.yexcr.2006.06.014. [DOI] [PubMed] [Google Scholar]
  • 16.D’Andrea AD, Grompe M. The Fanconi anaemia/BRCA pathway. Nat Rev Cancer. 2003;3(1):23–34. doi: 10.1038/nrc970. http://dx.doi.org/10.1038/nrc970. [DOI] [PubMed] [Google Scholar]
  • 17.Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran C, Bennett LM, Ding W, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266(5182):66–71. doi: 10.1126/science.7545954. http://dx.doi.org/10.1126/science.7545954. [DOI] [PubMed] [Google Scholar]
  • 18.Hall JM, Lee MK, Newman B, Morrow JE, Anderson LA, Huey B, King MC. Linkage of early-onset familial breast cancer to chromosome 17q21. Science. 1990;250(4988):1684–9. doi: 10.1126/science.2270482. http://dx.doi.org/10.1126/science.2270482. [DOI] [PubMed] [Google Scholar]
  • 19.Futreal PA, Liu Q, Shattuck-Eidens D, Cochran C, Harshman K, Tavtigian S, Bennett LM, Haugen-Strano A, Swensen J, Miki Y, et al. BRCA1 mutations in primary breast and ovarian carcinomas. Science. 1994;266(5182):120–2. doi: 10.1126/science.7939630. http://dx.doi.org/10.1126/science.7939630. [DOI] [PubMed] [Google Scholar]
  • 20.Deng CX, Scott F. Role of the tumor suppressor gene Brca1 in genetic stability and mammary gland tumor formation. Oncogene. 2000;19(8):1059–64. doi: 10.1038/sj.onc.1203269. http://dx.doi.org/10.1038/sj.onc.1203269. [DOI] [PubMed] [Google Scholar]
  • 21.Deng CX, Brodie SG. Roles of BRCA1 and its interacting proteins. Bioessays. 2000;22(8):728–37. doi: 10.1002/1521-1878(200008)22:8<728::AID-BIES6>3.0.CO;2-B. http://dx.doi.org/10.1002/1521-1878(200008)22:8<728::AID-BIES6>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  • 22.Bhattacharyya A, Ear US, Koller BH, Weichselbaum RR, Bishop DK. The breast cancer susceptibility gene BRCA1 is required for subnuclear assembly of Rad51 and survival following treatment with the DNA cross-linking agent cisplatin. J Biol Chem. 2000;275(31):23899–903. doi: 10.1074/jbc.C000276200. http://dx.doi.org/10.1074/jbc.C000276200. [DOI] [PubMed] [Google Scholar]
  • 23.Clark SL, Rodriguez AM, Snyder RR, Hankins GD, Boehning D. Structure-Function Of The Tumor Suppressor BRCA1. Comput Struct Biotechnol J. 2012;1(1) doi: 10.5936/csbj.201204005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Brzovic PS, Rajagopal P, Hoyt DW, King MC, Klevit RE. Structure of a BRCA1-BARD1 heterodimeric RING-RING complex. Nat Struct Biol. 2001;8(10):833–7. doi: 10.1038/nsb1001-833. http://dx.doi.org/10.1038/nsb1001-833. [DOI] [PubMed] [Google Scholar]
  • 25.Henderson JP, Byun J, Williams MV, Mueller DM, McCormick ML, Heinecke JW. Production of brominating intermediates by myeloperoxidase. A transhalogenation pathway for generating mutagenic nucleobases during inflammation. J Biol Chem. 2001;276(11):7867–75. doi: 10.1074/jbc.M005379200. http://dx.doi.org/10.1074/jbc.M005379200. [DOI] [PubMed] [Google Scholar]
  • 26.Williams RS, Lee MS, Hau DD, Glover JN. Structural basis of phosphopeptide recognition by the BRCT domain of BRCA1. Nat Struct Mol Biol. 2004;11(6):519–25. doi: 10.1038/nsmb776. http://dx.doi.org/10.1038/nsmb776. [DOI] [PubMed] [Google Scholar]
  • 27.Campbell SJ, Edwards RA, Glover JN. Comparison of the structures and peptide binding specificities of the BRCT domains of MDC1 and BRCA1. Structure. 2010;18(2):167–76. doi: 10.1016/j.str.2009.12.008. [DOI] [PubMed] [Google Scholar]
  • 28.Coquelle N, Green R, Glover JN. Impact of BRCA1 BRCT domain missense substitutions on phosphopeptide recognition. Biochemistry. 2011;50(21):4579–89. doi: 10.1021/bi2003795. http://dx.doi.org/10.1021/bi2003795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Wu LC, Wang ZW, Tsan JT, Spillman MA, Phung A, Xu XL, Yang MC, Hwang LY, Bowcock AM, Baer R. Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nat Genet. 1996;14(4):430–40. doi: 10.1038/ng1296-430. http://dx.doi.org/10.1038/ng1296-430. [DOI] [PubMed] [Google Scholar]
  • 30.Meza JE, Brzovic PS, King MC, Klevit RE. Mapping the functional domains of BRCA1. Interaction of the ring finger domains of BRCA1 and BARD1. J Biol Chem. 1999;274(9):5659–65. doi: 10.1074/jbc.274.9.5659. http://dx.doi.org/10.1074/jbc.274.9.5659. [DOI] [PubMed] [Google Scholar]
  • 31.Scully R, Chen J, Ochs RL, Keegan K, Hoekstra M, Feunteun J, Livingston DM. Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage. Cell. 1997;90(3):425–35. doi: 10.1016/s0092-8674(00)80503-6. http://dx.doi.org/10.1016/S0092-8674(00)80503-6. [DOI] [PubMed] [Google Scholar]
  • 32.Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci U S A. 1999;96(20):11364–9. doi: 10.1073/pnas.96.20.11364. http://dx.doi.org/10.1073/pnas.96.20.11364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Hashizume R, Fukuda M, Maeda I, Nishikawa H, Oyake D, Yabuki Y, Ogata H, Ohta T. The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J Biol Chem. 2001;276(18):14537–40. doi: 10.1074/jbc.C000881200. http://dx.doi.org/10.1074/jbc.C000881200. [DOI] [PubMed] [Google Scholar]
  • 34.Ludwig T, Chapman DL, Papaioannou VE, Efstratiadis A. Targeted mutations of breast cancer susceptibility gene homologs in mice: lethal phenotypes of Brca1, Brca2, Brca1/Brca2, Brca1/p53, and Brca2/p53 nullizygous embryos. Genes Dev. 1997;11(10):1226–41. doi: 10.1101/gad.11.10.1226. http://dx.doi.org/10.1101/gad.11.10.1226. [DOI] [PubMed] [Google Scholar]
  • 35.Hakem R, de la Pompa JL, Sirard C, Mo R, Woo M, Hakem A, Wakeham A, Potter J, Reitmair A, Billia F, Firpo E, Hui CC, Roberts J, Rossant J, Mak TW. The tumor suppressor gene Brca1 is required for embryonic cellular proliferation in the mouse. Cell. 1996;85(7):1009–23. doi: 10.1016/s0092-8674(00)81302-1. http://dx.doi.org/10.1016/S0092-8674(00)81302-1. [DOI] [PubMed] [Google Scholar]
  • 36.McCarthy EE, Celebi JT, Baer R, Ludwig T. Loss of Bard1, the heterodimeric partner of the Brca1 tumor suppressor, results in early embryonic lethality and chromosomal instability. Mol Cell Biol. 2003;23(14):5056–63. doi: 10.1128/MCB.23.14.5056-5063.2003. http://dx.doi.org/10.1128/MCB.23.14.5056-5063.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Liu CY, Flesken-Nikitin A, Li S, Zeng Y, Lee WH. Inactivation of the mouse Brca1 gene leads to failure in the morphogenesis of the egg cylinder in early postimplantation development. Genes Dev. 1996;10(14):1835–43. doi: 10.1101/gad.10.14.1835. http://dx.doi.org/10.1101/gad.10.14.1835. [DOI] [PubMed] [Google Scholar]
  • 38.Ghimenti C, Sensi E, Presciuttini S, Brunetti IM, Conte P, Bevilacqua G, Caligo MA. Germline mutations of the BRCA1-associated ring domain (BARD1) gene in breast and breast/ovarian families negative for BRCA1 and BRCA2 alterations. Genes Chromosomes Cancer. 2002;33(3):235–42. doi: 10.1002/gcc.1223. http://dx.doi.org/10.1002/gcc.1223. [DOI] [PubMed] [Google Scholar]
  • 39.Walsh T, Casadei S, Lee MK, Pennil CC, Nord AS, Thornton AM, Roeb W, Agnew KJ, Stray SM, Wickramanayake A, Norquist B, Pennington KP, Garcia RL, King MC, Swisher EM. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc Natl Acad Sci U S A. 2011;108(44):18032–7. doi: 10.1073/pnas.1115052108. http://dx.doi.org/10.1073/pnas.1115052108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Li ML, Greenberg RA. Links between genome integrity and BRCA1 tumor suppression. Trends Biochem Sci. 2012;37(10):418–24. doi: 10.1016/j.tibs.2012.06.007. http://dx.doi.org/10.1016/j.tibs.2012.06.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Al-Mulla F, Bland JM, Serratt D, Miller J, Chu C, Taylor GT. Age-dependent penetrance of different germline mutations in the BRCA1 gene. J Clin Pathol. 2009;62(4):350–6. doi: 10.1136/jcp.2008.062646. http://dx.doi.org/10.1136/jcp.2008.062646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Thakur S, Zhang HB, Peng Y, Le H, Carroll B, Ward T, Yao J, Farid LM, Couch FJ, Wilson RB, Weber BL. Localization of BRCA1 and a splice variant identifies the nuclear localization signal. Mol Cell Biol. 1997;17(1):444–52. doi: 10.1128/mcb.17.1.444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Wilson CA, Payton MN, Elliott GS, Buaas FW, Cajulis EE, Grosshans D, Ramos L, Reese DM, Slamon DJ, Calzone FJ. Differential subcellular localization, expression and biological toxicity of BRCA1 and the splice variant BRCA1-delta11b. Oncogene. 1997;14(1):1–16. doi: 10.1038/sj.onc.1200924. http://dx.doi.org/10.1038/sj.onc.1200924. [DOI] [PubMed] [Google Scholar]
  • 44.Chen CF, Li S, Chen Y, Chen PL, Sharp ZD, Lee WH. The nuclear localization sequences of the BRCA1 protein interact with the importin-alpha subunit of the nuclear transport signal receptor. J Biol Chem. 1996;271(51):32863–8. doi: 10.1074/jbc.271.51.32863. http://dx.doi.org/10.1074/jbc.271.51.32863. [DOI] [PubMed] [Google Scholar]
  • 45.Mohammad DH, Yaffe MB. 14-3-3 proteins, FHA domains and BRCT domains in the DNA damage response. DNA Repair (Amst) 2009;8(9):1009–17. doi: 10.1016/j.dnarep.2009.04.004. http://dx.doi.org/10.1016/j.dnarep.2009.04.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Chai YL, Cui J, Shao N, Shyam E, Reddy P, Rao VN. The second BRCT domain of BRCA1 proteins interacts with p53 and stimulates transcription from the p21WAF1/CIP1 promoter. Oncogene. 1999;18(1):263–8. doi: 10.1038/sj.onc.1202323. http://dx.doi.org/10.1038/sj.onc.1202323. [DOI] [PubMed] [Google Scholar]
  • 47.Yu X, Chini CC, He M, Mer G, Chen J. The BRCT domain is a phospho-protein binding domain. Science. 2003;302(5645):639–42. doi: 10.1126/science.1088753. http://dx.doi.org/10.1126/science.1088753. [DOI] [PubMed] [Google Scholar]
  • 48.Yu X, Chen J. DNA damage-induced cell cycle checkpoint control requires CtIP, a phosphorylation-dependent binding partner of BRCA1 C-terminal domains. Mol Cell Biol. 2004;24(21):9478–86. doi: 10.1128/MCB.24.21.9478-9486.2004. http://dx.doi.org/10.1128/MCB.24.21.9478-9486.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Kim H, Huang J, Chen J. CCDC98 is a BRCA1-BRCT domain-binding protein involved in the DNA damage response. Nat Struct Mol Biol. 2007;14(8):710–5. doi: 10.1038/nsmb1277. http://dx.doi.org/10.1038/nsmb1277. [DOI] [PubMed] [Google Scholar]
  • 50.Schwab M, Jayet PY, Allemann Y, Sartori C, Scherrer U. (High altitude pulmonary edema. An experiment of nature to study the underlying mechanisms of hypoxic pulmonary hypertension and pulmonary edema in humans) Medicina (B Aires) 2007;67(1):71–81. [PubMed] [Google Scholar]
  • 51.Castilla LH, Couch FJ, Erdos MR, Hoskins KF, Calzone K, Garber JE, Boyd J, Lubin MB, Deshano ML, Brody LC, et al. Mutations in the BRCA1 gene in families with early-onset breast and ovarian cancer. Nat Genet. 1994;8(4):387–91. doi: 10.1038/ng1294-387. http://dx.doi.org/10.1038/ng1294-387. [DOI] [PubMed] [Google Scholar]
  • 52.Clapperton JA, Manke IA, Lowery DM, Ho T, Haire LF, Yaffe MB, Smerdon SJ. Structure and mechanism of BRCA1 BRCT domain recognition of phosphorylated BACH1 with implications for cancer. Nat Struct Mol Biol. 2004;11(6):512–8. doi: 10.1038/nsmb775. http://dx.doi.org/10.1038/nsmb775. [DOI] [PubMed] [Google Scholar]
  • 53.Yamane K, Katayama E, Tsuruo T. The BRCT regions of tumor suppressor BRCA1 and of XRCC1 show DNA end binding activity with a multimerizing feature. Biochem Biophys Res Commun. 2000;279(2):678–84. doi: 10.1006/bbrc.2000.3983. http://dx.doi.org/10.1006/bbrc.2000.3983. [DOI] [PubMed] [Google Scholar]
  • 54.Chen Y, Chen CF, Riley DJ, Allred DC, Chen PL, Von Hoff D, Osborne CK, Lee WH. Aberrant subcellular localization of BRCA1 in breast cancer. Science. 1995;270(5237):789–91. doi: 10.1126/science.270.5237.789. http://dx.doi.org/10.1126/science.270.5237.789. [DOI] [PubMed] [Google Scholar]
  • 55.Scully R, Ganesan S, Brown M, De Caprio JA, Cannistra SA, Feunteun J, Schnitt S, Livingston DM. Location of BRCA1 in human breast and ovarian cancer cells. Science. 1996;272(5258):123–6. doi: 10.1126/science.272.5258.123. http://dx.doi.org/10.1126/science.272.5258.123. [DOI] [PubMed] [Google Scholar]
  • 56.Ruffner H, Verma IM. BRCA1 is a cell cycle-regulated nuclear phosphoprotein. Proc Natl Acad Sci U S A. 1997;94(14):7138–43. doi: 10.1073/pnas.94.14.7138. http://dx.doi.org/10.1073/pnas.94.14.7138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Jensen RA, Thompson ME, Jetton TL, Szabo CI, van der Meer R, Helou B, Tronick SR, Page DL, King MC, Holt JT. BRCA1 is secreted and exhibits properties of a granin. Nat Genet. 1996;12(3):303–8. doi: 10.1038/ng0396-303. http://dx.doi.org/10.1038/ng0396-303. [DOI] [PubMed] [Google Scholar]
  • 58.Holt JT, Thompson ME, Szabo C, Robinson-Benion C, Arteaga CL, King MC, Jensen RA. Growth retardation and tumour inhibition by BRCA1. Nat Genet. 1996;12(3):298–302. doi: 10.1038/ng0396-298. http://dx.doi.org/10.1038/ng0396-298. [DOI] [PubMed] [Google Scholar]
  • 59.Sanz DJ, Acedo A, Infante M, Duran M, Perez-Cabornero L, Esteban-Cardenosa E, Lastra E, Pagani F, Miner C, Velasco EA. A high proportion of DNA variants of BRCA1 and BRCA2 is associated with aberrant splicing in breast/ovarian cancer patients. Clin Cancer Res. 2010;16(6):1957–67. doi: 10.1158/1078-0432.CCR-09-2564. http://dx.doi.org/10.1158/1078-0432.CCR-09-2564. [DOI] [PubMed] [Google Scholar]
  • 60.Lixia M, Zhijian C, Chao S, Chaojiang G, Congyi Z. Alternative splicing of breast cancer associated gene BRCA1 from breast cancer cell line. J Biochem Mol Biol. 2007;40(1):15–21. doi: 10.5483/bmbrep.2007.40.1.015. http://dx.doi.org/10.5483/BMBRep.2007.40.1.015. [DOI] [PubMed] [Google Scholar]
  • 61.Xu CF, Brown MA, Chambers JA, Griffiths B, Nicolai H, Solomon E. Distinct transcription start sites generate two forms of BRCA1 mRNA. Hum Mol Genet. 1995;4(12):2259–64. doi: 10.1093/hmg/4.12.2259. http://dx.doi.org/10.1093/hmg/4.12.2259. [DOI] [PubMed] [Google Scholar]
  • 62.ElShamy WM, Livingston DM. Identification of BRCA1-IRIS, a BRCA1 locus product. Nat Cell Biol. 2004;6(10):954–67. doi: 10.1038/ncb1171. http://dx.doi.org/10.1038/ncb1171. [DOI] [PubMed] [Google Scholar]
  • 63.Fortin J, Moisan AM, Dumont M, Leblanc G, Labrie Y, Durocher F, Bessette P, Bridge P, Chiquette J, Laframboise R, Lepine J, Lesperance B, Pichette R, Plante M, Provencher L, Voyer P, Simard J. A new alternative splice variant of BRCA1 containing an additional in-frame exon. Biochim Biophys Acta. 2005;1731(1):57–65. doi: 10.1016/j.bbaexp.2005.08.011. http://dx.doi.org/10.1016/j.bbaexp.2005.08.011. [DOI] [PubMed] [Google Scholar]
  • 64.Sevcik J, Falk M, Kleiblova P, Lhota F, Stefancikova L, Janatova M, Weiterova L, Lukasova E, Kozubek S, Pohlreich P, Kleibl Z. The BRCA1 alternative splicing variant Delta14-15 with an in-frame deletion of part of the regulatory serine-containing domain (SCD) impairs the DNA repair capacity in MCF-7 cells. Cell Signal. 2012;24(5):1023–30. doi: 10.1016/j.cellsig.2011.12.023. http://dx.doi.org/10.1016/j.cellsig.2011.12.023. [DOI] [PubMed] [Google Scholar]
  • 65.Jasin M. Homologous repair of DNA damage and tumorigenesis: the BRCA connection. Oncogene. 2002;21(58):8981–93. doi: 10.1038/sj.onc.1206176. http://dx.doi.org/10.1038/sj.onc.1206176. [DOI] [PubMed] [Google Scholar]
  • 66.Ganesan S, Silver DP, Greenberg RA, Avni D, Drapkin R, Miron A, Mok SC, Randrianarison V, Brodie S, Salstrom J, Rasmussen TP, Klimke A, Marrese C, Marahrens Y, Deng CX, Feunteun J, Livingston DM. BRCA1 supports XIST RNA concentration on the inactive X chromosome. Cell. 2002;111(3):393–405. doi: 10.1016/s0092-8674(02)01052-8. http://dx.doi.org/10.1016/S0092-8674(02)01052-8. [DOI] [PubMed] [Google Scholar]
  • 67.Chen Y, Farmer AA, Chen CF, Jones DC, Chen PL, Lee WH. BRCA1 is a 220-kDa nuclear phosphoprotein that is expressed and phosphorylated in a cell cycle-dependent manner. Cancer Res. 1996;56(14):3168–72. [PubMed] [Google Scholar]
  • 68.Choudhury AD, Xu H, Baer R. Ubiquitination and proteasomal degradation of the BRCA1 tumor suppressor is regulated during cell cycle progression. J Biol Chem. 2004;279(32):33909–18. doi: 10.1074/jbc.M403646200. http://dx.doi.org/10.1074/jbc.M403646200. [DOI] [PubMed] [Google Scholar]
  • 69.Lee JS, Collins KM, Brown AL, Lee CH, Chung JH. hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature. 2000;404(6774):201–4. doi: 10.1038/35004614. http://dx.doi.org/10.1038/35004614. [DOI] [PubMed] [Google Scholar]
  • 70.Tibbetts RS, Cortez D, Brumbaugh KM, Scully R, Livingston D, Elledge SJ, Abraham RT. Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress. Genes Dev. 2000;14(23):2989–3002. doi: 10.1101/gad.851000. http://dx.doi.org/10.1101/gad.851000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Cortez D, Wang Y, Qin J, Elledge SJ. Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science. 1999;286(5442):1162–6. doi: 10.1126/science.286.5442.1162. http://dx.doi.org/10.1126/science.286.5442.1162. [DOI] [PubMed] [Google Scholar]
  • 72.Fabbro M, Rodriguez JA, Baer R, Henderson BR. BARD1 induces BRCA1 intranuclear foci formation by increasing RING-dependent BRCA1 nuclear import and inhibiting BRCA1 nuclear export. J Biol Chem. 2002;277(24):21315–24. doi: 10.1074/jbc.M200769200. http://dx.doi.org/10.1074/jbc.M200769200. [DOI] [PubMed] [Google Scholar]
  • 73.Huber LJ, Yang TW, Sarkisian CJ, Master SR, Deng CX, Chodosh LA. Impaired DNA damage response in cells expressing an exon 11-deleted murine Brca1 variant that localizes to nuclear foci. Mol Cell Biol. 2001;21(12):4005–15. doi: 10.1128/MCB.21.12.4005-4015.2001. http://dx.doi.org/10.1128/MCB.21.12.4005-4015.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Rodriguez JA, Henderson BR. Identification of a functional nuclear export sequence in BRCA1. J Biol Chem. 2000;275(49):38589–96. doi: 10.1074/jbc.M003851200. http://dx.doi.org/10.1074/jbc.M003851200. [DOI] [PubMed] [Google Scholar]
  • 75.Brodie KM, Henderson BR. Characterization of BRCA1 protein targeting, dynamics, and function at the centrosome: a role for the nuclear export signal, CRM1, and Aurora A kinase. J Biol Chem. 2012;287(10):7701–16. doi: 10.1074/jbc.M111.327296. http://dx.doi.org/10.1074/jbc.M111.327296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Thompson ME, Robinson-Benion CL, Holt JT. An amino-terminal motif functions as a second nuclear export sequence in BRCA1. J Biol Chem. 2005;280(23):21854–7. doi: 10.1074/jbc.M502676200. http://dx.doi.org/10.1074/jbc.M502676200. [DOI] [PubMed] [Google Scholar]
  • 77.Li S, Ku CY, Farmer AA, Cong YS, Chen CF, Lee WH. Identification of a novel cytoplasmic protein that specifically binds to nuclear localization signal motifs. J Biol Chem. 1998;273(11):6183–9. doi: 10.1074/jbc.273.11.6183. http://dx.doi.org/10.1074/jbc.273.11.6183. [DOI] [PubMed] [Google Scholar]
  • 78.Fulcher AJ, Roth DM, Fatima S, Alvisi G, Jans DA. The BRCA-1 binding protein BRAP2 is a novel, negative regulator of nuclear import of viral proteins, dependent on phosphorylation flanking the nuclear localization signal. FASEB J. 2010;24(5):1454–66. doi: 10.1096/fj.09-136564. http://dx.doi.org/10.1096/fj.09-136564. [DOI] [PubMed] [Google Scholar]
  • 79.Lingle WL, Lutz WH, Ingle JN, Maihle NJ, Salisbury JL. Centrosome hypertrophy in human breast tumors: implications for genomic stability and cell polarity. Proc Natl Acad Sci U S A. 1998;95(6):2950–5. doi: 10.1073/pnas.95.6.2950. http://dx.doi.org/10.1073/pnas.95.6.2950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Hsu LC, White RL. BRCA1 is associated with the centrosome during mitosis. Proc Natl Acad Sci U S A. 1998;95(22):12983–8. doi: 10.1073/pnas.95.22.12983. http://dx.doi.org/10.1073/pnas.95.22.12983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Sankaran S, Starita LM, Simons AM, Parvin JD. Identification of domains of BRCA1 critical for the ubiquitin-dependent inhibition of centrosome function. Cancer Res. 2006;66(8):4100–7. doi: 10.1158/0008-5472.CAN-05-4430. http://dx.doi.org/10.1158/0008-5472.CAN-05-4430. [DOI] [PubMed] [Google Scholar]
  • 82.Starita LM, Machida Y, Sankaran S, Elias JE, Griffin K, Schlegel BP, Gygi SP, Parvin JD. BRCA1-dependent ubiquitination of gamma-tubulin regulates centrosome number. Mol Cell Biol. 2004;24(19):8457–66. doi: 10.1128/MCB.24.19.8457-8466.2004. http://dx.doi.org/10.1128/MCB.24.19.8457-8466.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Joukov V, Groen AC, Prokhorova T, Gerson R, White E, Rodriguez A, Walter JC, Livingston DM. The BRCA1/BARD1 heterodimer modulates ran-dependent mitotic spindle assembly. Cell. 2006;127(3):539–52. doi: 10.1016/j.cell.2006.08.053. http://dx.doi.org/10.1016/j.cell.2006.08.053. [DOI] [PubMed] [Google Scholar]
  • 84.Wang RH, Yu H, Deng CX. A requirement for breast-cancer-associated gene 1 (BRCA1) in the spindle checkpoint. Proc Natl Acad Sci U S A. 2004;101(49):17108–13. doi: 10.1073/pnas.0407585101. http://dx.doi.org/10.1073/pnas.0407585101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Sato K, Hayami R, Wu W, Nishikawa T, Nishikawa H, Okuda Y, Ogata H, Fukuda M, Ohta T. Nucleophosmin/B23 is a candidate substrate for the BRCA1-BARD1 ubiquitin ligase. J Biol Chem. 2004;279(30):30919–22. doi: 10.1074/jbc.C400169200. http://dx.doi.org/10.1074/jbc.C400169200. [DOI] [PubMed] [Google Scholar]
  • 86.Wang W, Budhu A, Forgues M, Wang XW. Temporal and spatial control of nucleophosmin by the Ran-Crm1 complex in centrosome duplication. Nat Cell Biol. 2005;7(8):823–30. doi: 10.1038/ncb1282. http://dx.doi.org/10.1038/ncb1282. [DOI] [PubMed] [Google Scholar]
  • 87.Laulier C, Barascu A, Guirouilh-Barbat J, Pennarun G, Le Chalony C, Chevalier F, Palierne G, Bertrand P, Verbavatz JM, Lopez BS. Bcl-2 inhibits nuclear homologous recombination by localizing BRCA1 to the endomembranes. Cancer Res. 2011;71(10):3590–602. doi: 10.1158/0008-5472.CAN-10-3119. http://dx.doi.org/10.1158/0008-5472.CAN-10-3119. [DOI] [PubMed] [Google Scholar]
  • 88.Plo I, Laulier C, Gauthier L, Lebrun F, Calvo F, Lopez BS. AKT1 inhibits homologous recombination by inducing cytoplasmic retention of BRCA1 and RAD51. Cancer Res. 2008;68(22):9404–12. doi: 10.1158/0008-5472.CAN-08-0861. http://dx.doi.org/10.1158/0008-5472.CAN-08-0861. [DOI] [PubMed] [Google Scholar]
  • 89.Scully R, Ganesan S, Vlasakova K, Chen J, Socolovsky M, Livingston DM. Genetic analysis of BRCA1 function in a defined tumor cell line. Mol Cell. 1999;4(6):1093–9. doi: 10.1016/s1097-2765(00)80238-5. http://dx.doi.org/10.1016/S1097-2765(00)80238-5. [DOI] [PubMed] [Google Scholar]
  • 90.Hartman AR, Ford JM. BRCA1 induces DNA damage recognition factors and enhances nucleotide excision repair. Nat Genet. 2002;32(1):180–4. doi: 10.1038/ng953. http://dx.doi.org/10.1038/ng953. [DOI] [PubMed] [Google Scholar]
  • 91.Xu B, Kim S, Kastan MB. Involvement of Brca1 in S-phase and G(2)-phase checkpoints after ionizing irradiation. Mol Cell Biol. 2001;21(10):3445–50. doi: 10.1128/MCB.21.10.3445-3450.2001. http://dx.doi.org/10.1128/MCB.21.10.3445-3450.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Xu B, O’Donnell AH, Kim ST, Kastan MB. Phosphorylation of serine 1387 in Brca1 is specifically required for the Atm-mediated S-phase checkpoint after ionizing irradiation. Cancer Res. 2002;62(16):4588–91. [PubMed] [Google Scholar]
  • 93.Husain A, He G, Venkatraman ES, Spriggs DR. BRCA1 up-regulation is associated with repair-mediated resistance to cis-diamminedichloroplatinum(II) Cancer Res. 1998;58(6):1120–3. [PubMed] [Google Scholar]
  • 94.Silver DP, Richardson AL, Eklund AC, Wang ZC, Szallasi Z, Li Q, Juul N, Leong CO, Calogrias D, Buraimoh A, Fatima A, Gelman RS, Ryan PD, Tung NM, De Nicolo A, Ganesan S, Miron A, Colin C, Sgroi DC, Ellisen LW, Winer EP, Garber JE. Efficacy of neoadjuvant Cisplatin in triple-negative breast cancer. J Clin Oncol. 2010;28(7):1145–53. doi: 10.1200/JCO.2009.22.4725. http://dx.doi.org/10.1200/JCO.2009.22.4725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Abbott DW, Thompson ME, Robinson-Benion C, Tomlinson G, Jensen RA, Holt JT. BRCA1 expression restores radiation resistance in BRCA1-defective cancer cells through enhancement of transcription-coupled DNA repair. J Biol Chem. 1999;274(26):18808–12. doi: 10.1074/jbc.274.26.18808. http://dx.doi.org/10.1074/jbc.274.26.18808. [DOI] [PubMed] [Google Scholar]
  • 96.Scata KA, El-Deiry WS. p53, BRCA1 and breast Cancer chemoresistance. Adv Exp Med Biol. 2007;608:70–86. doi: 10.1007/978-0-387-74039-3_5. http://dx.doi.org/10.1007/978-0-387-74039-3_5. [DOI] [PubMed] [Google Scholar]
  • 97.Yarden RI, Pardo-Reoyo S, Sgagias M, Cowan KH, Brody LC. BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage. Nat Genet. 2002;30(3):285–9. doi: 10.1038/ng837. http://dx.doi.org/10.1038/ng837. [DOI] [PubMed] [Google Scholar]
  • 98.Zhang J, Powell SN. The role of the BRCA1 tumor suppressor in DNA double-strand break repair. Mol Cancer Res. 2005;3(10):531–9. doi: 10.1158/1541-7786.MCR-05-0192. http://dx.doi.org/10.1158/1541-7786.MCR-05-0192. [DOI] [PubMed] [Google Scholar]
  • 99.Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, Qin J. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev. 2000;14(8):927–39. [PMC free article] [PubMed] [Google Scholar]
  • 100.Traven A, Heierhorst J. SQ/TQ cluster domains: concentrated ATM/ATR kinase phosphorylation site regions in DNA-damage-response proteins. Bioessays. 2005;27(4):397–407. doi: 10.1002/bies.20204. http://dx.doi.org/10.1002/bies.20204. [DOI] [PubMed] [Google Scholar]
  • 101.Gatei M, Zhou BB, Hobson K, Scott S, Young D, Khanna KK. Ataxia telangiectasia mutated (ATM) kinase and ATM and Rad3 related kinase mediate phosphorylation of Brca1 at distinct and overlapping sites. In vivo assessment using phospho-specific antibodies. J Biol Chem. 2001;276(20):17276–80. doi: 10.1074/jbc.M011681200. http://dx.doi.org/10.1074/jbc.M011681200. [DOI] [PubMed] [Google Scholar]
  • 102.Chen J. Ataxia telangiectasia-related protein is involved in the phosphorylation of BRCA1 following deoxyribonucleic acid damage. Cancer Res. 2000;60(18):5037–9. [PubMed] [Google Scholar]
  • 103.Zhong Q, Chen CF, Li S, Chen Y, Wang CC, Xiao J, Chen PL, Sharp ZD, Lee WH. Association of BRCA1 with the hRad50-hMre11-p95 complex and the DNA damage response. Science. 1999;285(5428):747–50. doi: 10.1126/science.285.5428.747. http://dx.doi.org/10.1126/science.285.5428.747. [DOI] [PubMed] [Google Scholar]
  • 104.Sy SM, Huen MS, Chen J. PALB2 is an integral component of the BRCA complex required for homologous recombination repair. Proc Natl Acad Sci U S A. 2009;106(17):7155–60. doi: 10.1073/pnas.0811159106. http://dx.doi.org/10.1073/pnas.0811159106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Coene ED, Hollinshead MS, Waeytens AA, Schelfhout VR, Eechaute WP, Shaw MK, Van Oostveldt PM, Vaux DJ. Phosphorylated BRCA1 is predominantly located in the nucleus and mitochondria. Mol Biol Cell. 2005;16(2):997–1010. doi: 10.1091/mbc.E04-10-0895. http://dx.doi.org/10.1091/mbc.E04-10-0895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Tembe V, Henderson BR. BARD1 translocation to mitochondria correlates with Bax oligomerization, loss of mitochondrial membrane potential, and apoptosis. J Biol Chem. 2007;282(28):20513–22. doi: 10.1074/jbc.M702627200. http://dx.doi.org/10.1074/jbc.M702627200. [DOI] [PubMed] [Google Scholar]
  • 107.Brodie KM, Henderson BR. Differential modulation of BRCA1 and BARD1 nuclear localisation and foci assembly by DNA damage. Cell Signal. 2010;22(2):291–302. doi: 10.1016/j.cellsig.2009.09.034. http://dx.doi.org/10.1016/j.cellsig.2009.09.034. [DOI] [PubMed] [Google Scholar]
  • 108.Thompson ME, Jensen RA, Obermiller PS, Page DL, Holt JT. Decreased expression of BRCA1 accelerates growth and is often present during sporadic breast cancer progression. Nat Genet. 1995;9(4):444–50. doi: 10.1038/ng0495-444. http://dx.doi.org/10.1038/ng0495-444. [DOI] [PubMed] [Google Scholar]
  • 109.De Luca P, Vazquez ES, Moiola CP, Zalazar F, Cotignola J, Gueron G, Gardner K, De Siervi A. BRCA1 loss induces GADD153-mediated doxorubicin resistance in prostate cancer. Mol Cancer Res. 2011;9(8):1078–90. doi: 10.1158/1541-7786.MCR-11-0155. http://dx.doi.org/10.1158/1541-7786.MCR-11-0155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.Aprelikova ON, Fang BS, Meissner EG, Cotter S, Campbell M, Kuthiala A, Bessho M, Jensen RA, Liu ET. BRCA1-associated growth arrest is RB-dependent. Proc Natl Acad Sci U S A. 1999;96(21):11866–71. doi: 10.1073/pnas.96.21.11866. http://dx.doi.org/10.1073/pnas.96.21.11866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Classon M, Harlow E. The retinoblastoma tumour suppressor in development and cancer. Nat Rev Cancer. 2002;2(12):910–7. doi: 10.1038/nrc950. http://dx.doi.org/10.1038/nrc950. [DOI] [PubMed] [Google Scholar]
  • 112.Zeller KI, Zhao X, Lee CW, Chiu KP, Yao F, Yustein JT, Ooi HS, Orlov YL, Shahab A, Yong HC, Fu Y, Weng Z, Kuznetsov VA, Sung WK, Ruan Y, Dang CV, Wei CL. Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc Natl Acad Sci U S A. 2006;103(47):17834–9. doi: 10.1073/pnas.0604129103. http://dx.doi.org/10.1073/pnas.0604129103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113.Wang Q, Zhang H, Kajino K, Greene MI. BRCA1 binds c-Myc and inhibits its transcriptional and transforming activity in cells. Oncogene. 1998;17(15):1939–48. doi: 10.1038/sj.onc.1202403. http://dx.doi.org/10.1038/sj.onc.1202403. [DOI] [PubMed] [Google Scholar]
  • 114.Pujana MA, Han JD, Starita LM, Stevens KN, Tewari M, Ahn JS, Rennert G, Moreno V, Kirchhoff T, Gold B, Assmann V, Elshamy WM, Rual JF, Levine D, Rozek LS, Gelman RS, Gunsalus KC, Greenberg RA, Sobhian B, Bertin N, Venkatesan K, Ayivi-Guedehoussou N, Sole X, Hernandez P, Lazaro C, Nathanson KL, Weber BL, Cusick ME, Hill DE, Offit K, Livingston DM, Gruber SB, Parvin JD, Vidal M. Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat Genet. 2007;39(11):1338–49. doi: 10.1038/ng.2007.2. http://dx.doi.org/10.1038/ng.2007.2. [DOI] [PubMed] [Google Scholar]
  • 115.Maxwell CA, Benitez J, Gomez-Baldo L, Osorio A, Bonifaci N, Fernandez-Ramires R, Costes SV, Guino E, Chen H, vans GJE, Mohan P, Catala I, Petit A, Aguilar H, Villanueva A, Aytes A, Serra-Musach J, Rennert G, Lejbkowicz F, Peterlongo P, Manoukian S, Peissel B, Ripamonti CB, Bonanni B, Viel A, Allavena A, Bernard L, Radice P, Friedman E, Kaufman B, Laitman Y, Dubrovsky M, Milgrom R, Jakubowska A, Cybulski C, Gorski B, Jaworska K, Durda K, Sukiennicki G, Lubinski J, Shugart YY, Domchek SM, Letrero R, Weber BL, Hogervorst FB, Rookus MA, Collee JM, Devilee P, Ligtenberg MJ, Luijt RB, Aalfs CM, Waisfisz Q, Wijnen J, Roozendaal CE, Easton DF, Peock S, Cook M, Oliver C, Frost D, Harrington P, vans DGE, Lalloo F, Eeles R, Izatt L, Chu C, Eccles D, Douglas F, Brewer C, Nevanlinna H, Heikkinen T, Couch FJ, Lindor NM, Wang X, Godwin AK, Caligo MA, Lombardi G, Loman N, Karlsson P, Ehrencrona H, Wachenfeldt A, Barkardottir RB, Hamann U, Rashid MU, Lasa A, Caldes T, Andres R, Schmitt M, Assmann V, Stevens K, Offit K, Curado J, Tilgner H, Guigo R, Aiza G, Brunet J, Castellsague J, Martrat G, Urruticoechea A, Blanco I, Tihomirova L, Goldgar DE, Buys S, John EM, Miron A, Southey M, Daly MB, Schmutzler RK, Wappenschmidt B, Meindl A, Arnold N, Deissler H, Varon-Mateeva R, Sutter C, Niederacher D, Imyamitov E, Sinilnikova OM, Stoppa-Lyonne D, Mazoyer S, Verny-Pierre C, Castera L, de Pauw A, Bignon YJ, Uhrhammer N, Peyrat JP, Vennin P, Fert Ferrer S, Collonge-Rame MA, Mortemousque I, Spurdle AB, Beesley J, Chen X, Healey S, Barcellos-Hoff MH, Vidal M, Gruber SB, Lazaro C, Capella G, McGuffog L, Nathanson KL, Antoniou AC, Chenevix-Trench G, Fleisch MC, Moreno V, Pujana MA. Interplay between BRCA1 and RHAMM regulates epithelial apicobasal polarization and may influence risk of breast cancer. PLoS Biol. 2011;9(11):e1001199. doi: 10.1371/journal.pbio.1001199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116.Zhang H, Somasundaram K, Peng Y, Tian H, Bi D, Weber BL, El-Deiry WS. BRCA1 physically associates with p53 and stimulates its transcriptional activity. Oncogene. 1998;16(13):1713–21. doi: 10.1038/sj.onc.1201932. http://dx.doi.org/10.1038/sj.onc.1201932. [DOI] [PubMed] [Google Scholar]
  • 117.Zheng L, Annab LA, Afshari CA, Lee WH, Boyer TG. BRCA1 mediates ligand-independent transcriptional repression of the estrogen receptor. Proc Natl Acad Sci U S A. 2001;98(17):9587–92. doi: 10.1073/pnas.171174298. http://dx.doi.org/10.1073/pnas.171174298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.Ouchi T, Lee SW, Ouchi M, Aaronson SA, Horvath CM. Collaboration of signal transducer and activator of transcription 1 (STAT1) and BRCA1 in differential regulation of IFN-gamma target genes. Proc Natl Acad Sci U S A. 2000;97(10):5208–13. doi: 10.1073/pnas.080469697. http://dx.doi.org/10.1073/pnas.080469697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119.Wong AK, Ormonde PA, Pero R, Chen Y, Lian L, Salada G, Berry S, Lawrence Q, Dayananth P, Ha P, Tavtigian SV, Teng DH, Bartel PL. Characterization of a carboxy-terminal BRCA1 interacting protein. Oncogene. 1998;17(18):2279–85. doi: 10.1038/sj.onc.1202150. http://dx.doi.org/10.1038/sj.onc.1202150. [DOI] [PubMed] [Google Scholar]
  • 120.Yu X, Wu LC, Bowcock AM, Aronheim A, Baer R. The C-terminal (BRCT) domains of BRCA1 interact in vivo with CtIP, a protein implicated in the CtBP pathway of transcriptional repression. J Biol Chem. 1998;273(39):25388–92. doi: 10.1074/jbc.273.39.25388. http://dx.doi.org/10.1074/jbc.273.39.25388. [DOI] [PubMed] [Google Scholar]
  • 121.Zheng L, Pan H, Li S, Flesken-Nikitin A, Chen PL, Boyer TG, Lee WH. Sequence-specific transcriptional corepressor function for BRCA1 through a novel zinc finger protein, ZBRK1. Mol Cell. 2000;6(4):757–68. doi: 10.1016/s1097-2765(00)00075-7. http://dx.doi.org/10.1016/S1097-2765(00)00075-7. [DOI] [PubMed] [Google Scholar]
  • 122.Anderson SF, Schlegel BP, Nakajima T, Wolpin ES, Parvin JD. BRCA1 protein is linked to the RNA polymerase II holoenzyme complex via RNA helicase A. Nat Genet. 1998;19(3):254–6. doi: 10.1038/930. http://dx.doi.org/10.1038/930. [DOI] [PubMed] [Google Scholar]
  • 123.Scully R, Anderson SF, Chao DM, Wei W, Ye L, Young RA, Livingston DM, Parvin JD. BRCA1 is a component of the RNA polymerase II holoenzyme. Proc Natl Acad Sci U S A. 1997;94(11):5605–10. doi: 10.1073/pnas.94.11.5605. http://dx.doi.org/10.1073/pnas.94.11.5605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.De Siervi A, De Luca P, Byun JS, Di LJ, Fufa T, Haggerty CM, Vazquez E, Moiola C, Longo DL, Gardner K. Transcriptional autoregulation by BRCA1. Cancer Res. 2010;70(2):532–42. doi: 10.1158/0008-5472.CAN-09-1477. http://dx.doi.org/10.1158/0008-5472.CAN-09-1477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125.Di LJ, Fernandez AG, De Siervi A, Longo DL, Gardner K. Transcriptional regulation of BRCA1 expression by a metabolic switch. Nat Struct Mol Biol. 2010;17(12):1406–13. doi: 10.1038/nsmb.1941. http://dx.doi.org/10.1038/nsmb.1941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126.Chen GC, Guan LS, Yu JH, Li GC, Choi Kim HR, Wang ZY. Rb-associated protein 46 (RbAp46) inhibits transcriptional transactivation mediated by BRCA1. Biochem Biophys Res Commun. 2001;284(2):507–14. doi: 10.1006/bbrc.2001.5003. http://dx.doi.org/10.1006/bbrc.2001.5003. [DOI] [PubMed] [Google Scholar]
  • 127.Bochar DA, Wang L, Beniya H, Kinev A, Xue Y, Lane WS, Wang W, Kashanchi F, Shiekhattar R. BRCA1 is associated with a human SWI/SNF-related complex: linking chromatin remodeling to breast cancer. Cell. 2000;102(2):257–65. doi: 10.1016/s0092-8674(00)00030-1. http://dx.doi.org/10.1016/S0092-8674(00)00030-1. [DOI] [PubMed] [Google Scholar]
  • 128.Furuta S, Wang JM, Wei S, Jeng YM, Jiang X, Gu B, Chen PL, Lee EY, Lee WH. Removal of BRCA1/CtIP/ZBRK1 repressor complex on ANG1 promoter leads to accelerated mammary tumor growth contributed by prominent vasculature. Cancer Cell. 2006;10(1):13–24. doi: 10.1016/j.ccr.2006.05.022. http://dx.doi.org/10.1016/j.ccr.2006.05.022. [DOI] [PubMed] [Google Scholar]
  • 129.Mullan PB, Quinn JE, Harkin DP. The role of BRCA1 in transcriptional regulation and cell cycle control. Oncogene. 2006;25(43):5854–63. doi: 10.1038/sj.onc.1209872. [DOI] [PubMed] [Google Scholar]
  • 130.Wooster R, Neuhausen SL, Mangion J, Quirk Y, Ford D, Collins N, Nguyen K, Seal S, Tran T, Averill D, et al. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science. 1994;265(5181):2088–90. doi: 10.1126/science.8091231. http://dx.doi.org/10.1126/science.8091231. [DOI] [PubMed] [Google Scholar]
  • 131.Bork P, Blomberg N, Nilges M. Internal repeats in the BRCA2 protein sequence. Nat Genet. 1996;13(1):22–3. doi: 10.1038/ng0596-22. http://dx.doi.org/10.1038/ng0596-22. [DOI] [PubMed] [Google Scholar]
  • 132.Chen PL, Chen CF, Chen Y, Xiao J, Sharp ZD, Lee WH. The BRC repeats in BRCA2 are critical for RAD51 binding and resistance to methyl methanesulfonate treatment. Proc Natl Acad Sci U S A. 1998;95(9):5287–92. doi: 10.1073/pnas.95.9.5287. http://dx.doi.org/10.1073/pnas.95.9.5287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133.Wong AK, Pero R, Ormonde PA, Tavtigian SV, Bartel PL. RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene brca2. J Biol Chem. 1997;272(51):31941–4. doi: 10.1074/jbc.272.51.31941. http://dx.doi.org/10.1074/jbc.272.51.31941. [DOI] [PubMed] [Google Scholar]
  • 134.Pellegrini L, Yu DS, Lo T, Anand S, Lee M, Blundell TL, Venkitaraman AR. Insights into DNA recombination from the structure of a RAD51-BRCA2 complex. Nature. 2002;420(6913):287–93. doi: 10.1038/nature01230. http://dx.doi.org/10.1038/nature01230. [DOI] [PubMed] [Google Scholar]
  • 135.Chen J, Silver DP, Walpita D, Cantor SB, Gazdar AF, Tomlinson G, Couch FJ, Weber BL, Ashley T, Livingston DM, Scully R. Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells. Mol Cell. 1998;2(3):317–28. doi: 10.1016/s1097-2765(00)80276-2. http://dx.doi.org/10.1016/S1097-2765(00)80276-2. [DOI] [PubMed] [Google Scholar]
  • 136.Spain BH, Larson CJ, Shihabuddin LS, Gage FH, Verma IM. Truncated BRCA2 is cytoplasmic: implications for cancer-linked mutations. Proc Natl Acad Sci U S A. 1999;96(24):13920–5. doi: 10.1073/pnas.96.24.13920. http://dx.doi.org/10.1073/pnas.96.24.13920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137.Preobrazhenska O, Yakymovych M, Kanamoto T, Yakymovych I, Stoika R, Heldin CH, Souchelnytskyi S. BRCA2 and Smad3 synergize in regulation of gene transcription. Oncogene. 2002;21(36):5660–4. doi: 10.1038/sj.onc.1205732. http://dx.doi.org/10.1038/sj.onc.1205732. [DOI] [PubMed] [Google Scholar]
  • 138.Shin S, Verma IM. BRCA2 cooperates with histone acetyltransferases in androgen receptor-mediated transcription. Proc Natl Acad Sci U S A. 2003;100(12):7201–6. doi: 10.1073/pnas.1132020100. http://dx.doi.org/10.1073/pnas.1132020100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139.Yang H, Jeffrey PD, Miller J, Kinnucan E, Sun Y, Thoma NH, Zheng N, Chen PL, Lee WH, Pavletich NP. BRCA2 function in DNA binding and recombination from a BRCA2-DSS1-ssDNA structure. Science. 2002;297(5588):1837–48. doi: 10.1126/science.297.5588.1837. http://dx.doi.org/10.1126/science.297.5588.1837. [DOI] [PubMed] [Google Scholar]
  • 140.Connor F, Bertwistle D, Mee PJ, Ross GM, Swift S, Grigorieva E, Tybulewicz VL, Ashworth A. Tumorigenesis and a DNA repair defect in mice with a truncating Brca2 mutation. Nat Genet. 1997;17(4):423–30. doi: 10.1038/ng1297-423. http://dx.doi.org/10.1038/ng1297-423. [DOI] [PubMed] [Google Scholar]
  • 141.Tavormina PL, Shiang R, Thompson LM, Zhu YZ, Wilkin DJ, Lachman RS, Wilcox WR, Rimoin DL, Cohn DH, Wasmuth JJ. Thanatophoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3. Nat Genet. 1995;9(3):321–8. doi: 10.1038/ng0395-321. http://dx.doi.org/10.1038/ng0395-321. [DOI] [PubMed] [Google Scholar]
  • 142.Miyakis S, Sourvinos G, Spandidos DA. Differential expression and mutation of the ras family genes in human breast cancer. Biochem Biophys Res Commun. 1998;251(2):609–12. doi: 10.1006/bbrc.1998.9527. [DOI] [PubMed] [Google Scholar]
  • 143.King MC, Marks JH, Mandell JB. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science. 2003;302(5645):643–6. doi: 10.1126/science.1088759. http://dx.doi.org/10.1126/science.1088759. [DOI] [PubMed] [Google Scholar]
  • 144.Antoniou A, Pharoah PD, Narod S, Risch HA, Eyfjord JE, Hopper JL, Loman N, Olsson H, Johannsson O, Borg A, Pasini B, Radice P, Manoukian S, Eccles DM, Tang N, Olah E, Anton-Culver H, Warner E, Lubinski J, Gronwald J, Gorski B, Tulinius H, Thorlacius S, Eerola H, Nevanlinna H, Syrjakoski K, Kallioniemi OP, Thompson D, Evans C, Peto J, Lalloo F, Evans DG, Easton DF. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet. 2003;72(5):1117–30. doi: 10.1086/375033. http://dx.doi.org/10.1086/375033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145.van der Kolk DM, de Bock GH, Leegte BK, Schaapveld M, Mourits MJ, de Vries J, van der Hout AH, Oosterwijk JC. Penetrance of breast cancer, ovarian cancer and contralateral breast cancer in BRCA1 and BRCA2 families: high cancer incidence at older age. Breast Cancer Res Treat. 2010;124(3):643–51. doi: 10.1007/s10549-010-0805-3. http://dx.doi.org/10.1007/s10549-010-0805-3. [DOI] [PubMed] [Google Scholar]
  • 146.Veronesi A, de Giacomi C, Magri MD, Lombardi D, Zanetti M, Scuderi C, Dolcetti R, Viel A, Crivellari D, Bidoli E, Boiocchi M. Familial breast cancer: characteristics and outcome of BRCA 1–2 positive and negative cases. BMC Cancer. 2005;5:70. doi: 10.1186/1471-2407-5-70. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147.Debniak T, Scott RJ, Gorski B, Cybulski C, van de Wetering T, Serrano-Fernandez P, Huzarski T, Byrski T, Nagay L, Debniak B, Kowalska E, Jakubowska A, Gronwald J, Wokolorczyk D, Maleszka R, Kladny J, Lubinski J. Common variants of DNA repair genes and malignant melanoma. Eur J Cancer. 2008;44(1):110–4. doi: 10.1016/j.ejca.2007.10.006. http://dx.doi.org/10.1016/j.ejca.2007.10.006. [DOI] [PubMed] [Google Scholar]
  • 148.Kadouri L, Hubert A, Rotenberg Y, Hamburger T, Sagi M, Nechushtan C, Abeliovich D, Peretz T. Cancer risks in carriers of the BRCA1/2 Ashkenazi founder mutations. J Med Genet. 2007;44(7):467–71. doi: 10.1136/jmg.2006.048173. http://dx.doi.org/10.1136/jmg.2006.048173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 149.Cybulski C, Gorski B, Gronwald J, Huzarski T, Byrski T, Debniak T, Jakubowska A, Wokolorczyk D, Gliniewicz B, Sikorski A, Stawicka M, Godlewski D, Kwias Z, Antczak A, Krajka K, Lauer W, Sosnowski M, Sikorska-Radek P, Bar K, Klijer R, Romuald Z, Malkiewicz B, Borkowski A, Borkowski T, Szwiec M, Posmyk M, Narod SA, Lubinski J. BRCA1 mutations and prostate cancer in Poland. Eur J Cancer Prev. 2008;17(1):62–6. doi: 10.1097/CEJ.0b013e32809b4d20. http://dx.doi.org/10.1097/CEJ.0b013e32809b4d20. [DOI] [PubMed] [Google Scholar]
  • 150.Suchy J, Cybulski C, Gorski B, Huzarski T, Byrski T, Debniak T, Gronwald J, Jakubowska A, Wokolorczyk D, Kurzawski G, Kladny J, Jawien A, Banaszkiewicz Z, Wisniowski R, Wandzel P, Starzewski J, Lorenc Z, Korobowicz E, Krokowicz P, Horbacka K, Lubinski J, Narod SA. BRCA1 mutations and colorectal cancer in Poland. Fam Cancer. 2010;9(4):541–4. doi: 10.1007/s10689-010-9378-x. http://dx.doi.org/10.1007/s10689-010-9378-x. [DOI] [PubMed] [Google Scholar]
  • 151.Atchley DP, Albarracin CT, Lopez A, Valero V, Amos CI, Gonzalez-Angulo AM, Hortobagyi GN, Arun BK. Clinical and pathologic characteristics of patients with BRCA-positive and BRCA-negative breast cancer. J Clin Oncol. 2008;26(26):4282–8. doi: 10.1200/JCO.2008.16.6231. http://dx.doi.org/10.1200/JCO.2008.16.6231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152.Tung N, Wang Y, Collins LC, Kaplan J, Li H, Gelman R, Comander AH, Gallagher B, Fetten K, Krag K, Stoeckert KA, Legare RD, Sgroi D, Ryan PD, Garber JE, Schnitt SJ. Estrogen receptor positive breast cancers in BRCA1 mutation carriers: clinical risk factors and pathologic features. Breast Cancer Res. 2010;12(1):R12. doi: 10.1186/bcr2478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 153.Tung N, Miron A, Schnitt SJ, Gautam S, Fetten K, Kaplan J, Yassin Y, Buraimoh A, Kim JY, Szasz AM, Tian R, Wang ZC, Collins LC, Brock J, Krag K, Legare RD, Sgroi D, Ryan PD, Silver DP, Garber JE, Richardson AL. Prevalence and predictors of loss of wild type BRCA1 in estrogen receptor positive and negative BRCA1-associated breast cancers. Breast Cancer Res. 2010;12(6):R95. doi: 10.1186/bcr2776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 154.Boyd J, Sonoda Y, Federici MG, Bogomolniy F, Rhei E, Maresco DL, Saigo PE, Almadrones LA, Barakat RR, Brown CL, Chi DS, Curtin JP, Poynor EA, Hoskins WJ. Clinicopathologic features of BRCA-linked and sporadic ovarian cancer. JAMA. 2000;283(17):2260–5. doi: 10.1001/jama.283.17.2260. http://dx.doi.org/10.1001/jama.283.17.2260. [DOI] [PubMed] [Google Scholar]
  • 155.Foulkes WD. Re: Potential for bias in studies on efficacy of prophylactic surgery for BRCA1 and BRCA2 mutation carriers. J Natl Cancer Inst. 2003;95(17):1344. doi: 10.1093/jnci/djg053. author reply 1344. [DOI] [PubMed] [Google Scholar]
  • 156.Lakhani SR, Reis-Filho JS, Fulford L, Penault-Llorca F, van der Vijver M, Parry S, Bishop T, Benitez J, Rivas C, Bignon YJ, Chang-Claude J, Hamann U, Cornelisse CJ, Devilee P, Beckmann MW, Nestle-Kramling C, Daly PA, Haites N, Varley J, Lalloo F, Evans G, Maugard C, Meijers-Heijboer H, Klijn JG, Olah E, Gusterson BA, Pilotti S, Radice P, Scherneck S, Sobol H, Jacquemier J, Wagner T, Peto J, Stratton MR, McGuffog L, Easton DF. Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin Cancer Res. 2005;11(14):5175–80. doi: 10.1158/1078-0432.CCR-04-2424. http://dx.doi.org/10.1158/1078-0432.CCR-04-2424. [DOI] [PubMed] [Google Scholar]
  • 157.Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J, Perou CM, Lonning PE, Brown PO, Borresen-Dale AL, Botstein D. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A. 2003;100(14):8418–23. doi: 10.1073/pnas.0932692100. http://dx.doi.org/10.1073/pnas.0932692100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 158.Johannsson OT, Idvall I, Anderson C, Borg A, Barkardottir RB, Egilsson V, Olsson H. Tumour biological features of BRCA1-induced breast and ovarian cancer. Eur J Cancer. 1997;33(3):362–71. doi: 10.1016/s0959-8049(97)89007-7. http://dx.doi.org/10.1016/S0959-8049(97)89007-7. [DOI] [PubMed] [Google Scholar]
  • 159.Loman N, Johannsson O, Bendahl PO, Borg A, Ferno M, Olsson H. Steroid receptors in hereditary breast carcinomas associated with BRCA1 or BRCA2 mutations or unknown susceptibility genes. Cancer. 1998;83(2):310–9. http://dx.doi.org/10.1002/(SICI)1097-0142(19980715)83:2<310::AID-CNCR15>3.0.CO;2-W. [PubMed] [Google Scholar]
  • 160.Musolino A, Bella MA, Bortesi B, Michiara M, Naldi N, Zanelli P, Capelletti M, Pezzuolo D, Camisa R, Savi M, Neri TM, Ardizzoni A. BRCA mutations, molecular markers, and clinical variables in early-onset breast cancer: a population-based study. Breast. 2007;16(3):280–92. doi: 10.1016/j.breast.2006.12.003. http://dx.doi.org/10.1016/j.breast.2006.12.003. [DOI] [PubMed] [Google Scholar]
  • 161.Turner NC, Reis-Filho JS, Russell AM, Springall RJ, Ryder K, Steele D, Savage K, Gillett CE, Schmitt FC, Ashworth A, Tutt AN. BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene. 2007;26(14):2126–32. doi: 10.1038/sj.onc.1210014. http://dx.doi.org/10.1038/sj.onc.1210014. [DOI] [PubMed] [Google Scholar]
  • 162.Catteau A, Harris WH, Xu CF, Solomon E. Methylation of the BRCA1 promoter region in sporadic breast and ovarian cancer: correlation with disease characteristics. Oncogene. 1999;18(11):1957–65. doi: 10.1038/sj.onc.1202509. http://dx.doi.org/10.1038/sj.onc.1202509. [DOI] [PubMed] [Google Scholar]
  • 163.Bougie O, Weberpals JI. Clinical Considerations of BRCA1- and BRCA2-Mutation Carriers: A Review. Int J Surg Oncol. 2011;2011:374012. doi: 10.1155/2011/374012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 164.Daly MB, Axilbund JE, Buys S, Crawford B, Farrell CD, Friedman S, Garber JE, Goorha S, Gruber SB, Hampel H, Kaklamani V, Kohlmann W, Kurian A, Litton J, Marcom PK, Nussbaum R, Offit K, Pal T, Pasche B, Pilarski R, Reiser G, Shannon KM, Smith JR, Swisher E, Weitzel JN. Genetic/familial high-risk assessment: breast and ovarian. J Natl Compr Canc Netw. 2010;8(5):562–94. doi: 10.6004/jnccn.2010.0043. [DOI] [PubMed] [Google Scholar]
  • 165.Bevers TB, Armstrong DK, Arun B, Carlson RW, Cowan KH, Daly MB, Fleming I, Garber JE, Gemignani M, Gradishar WJ, Krontiras H, Kulkarni S, Laronga C, Loftus L, Macdonald DJ, Mahoney MC, Merajver SD, Meszoely I, Newman L, Pritchard E, Seewaldt V, Sellin RV, Shapiro CL, Ward JH. Breast cancer risk reduction. J Natl Compr Canc Netw. 2010;8(10):1112–46. doi: 10.6004/jnccn.2010.0083. [DOI] [PubMed] [Google Scholar]
  • 166.Iodice S, Barile M, Rotmensz N, Feroce I, Bonanni B, Radice P, Bernard L, Maisonneuve P, Gandini S. Oral contraceptive use and breast or ovarian cancer risk in BRCA1/2 carriers: a meta-analysis. Eur J Cancer. 2010;46(12):2275–84. doi: 10.1016/j.ejca.2010.04.018. http://dx.doi.org/10.1016/j.ejca.2010.04.018. [DOI] [PubMed] [Google Scholar]
  • 167.Domchek SM, Friebel TM, Singer CF, Evans DG, Lynch HT, Isaacs C, Garber JE, Neuhausen SL, Matloff E, Eeles R, Pichert G, Van t’veer L, Tung N, Weitzel JN, Couch FJ, Rubinstein WS, Ganz PA, Daly MB, Olopade OI, Tomlinson G, Schildkraut J, Blum JL, Rebbeck TR. Association of risk-reducing surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality. JAMA. 2010;304(9):967–75. doi: 10.1001/jama.2010.1237. http://dx.doi.org/10.1001/jama.2010.1237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 168.Evers B, Helleday T, Jonkers J. Targeting homologous recombination repair defects in cancer. Trends Pharmacol Sci. 2010;31(8):372–80. doi: 10.1016/j.tips.2010.06.001. http://dx.doi.org/10.1016/j.tips.2010.06.001. [DOI] [PubMed] [Google Scholar]
  • 169.Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA. DNA repair pathways as targets for cancer therapy. Nat Rev Cancer. 2008;8(3):193–204. doi: 10.1038/nrc2342. http://dx.doi.org/10.1038/nrc2342. [DOI] [PubMed] [Google Scholar]
  • 170.Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ, Helleday T. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005;434(7035):913–7. doi: 10.1038/nature03443. http://dx.doi.org/10.1038/nature03443. [DOI] [PubMed] [Google Scholar]
  • 171.Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NM, Jackson SP, Smith GC, Ashworth A. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434(7035):917–21. doi: 10.1038/nature03445. http://dx.doi.org/10.1038/nature03445. [DOI] [PubMed] [Google Scholar]
  • 172.McCabe N, Turner NC, Lord CJ, Kluzek K, Bialkowska A, Swift S, Giavara S, O’Connor MJ, Tutt AN, Zdzienicka MZ, Smith GC, Ashworth A. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res. 2006;66(16):8109–15. doi: 10.1158/0008-5472.CAN-06-0140. http://dx.doi.org/10.1158/0008-5472.CAN-06-0140. [DOI] [PubMed] [Google Scholar]
  • 173.Martin SA, Lord CJ, Ashworth A. DNA repair deficiency as a therapeutic target in cancer. Curr Opin Genet Dev. 2008;18(1):80–6. doi: 10.1016/j.gde.2008.01.016. http://dx.doi.org/10.1016/j.gde.2008.01.016. [DOI] [PubMed] [Google Scholar]
  • 174.Anders CK, Winer EP, Ford JM, Dent R, Silver DP, Sledge GW, Carey LA. Poly(ADP-Ribose) polymerase inhibition: “targeted” therapy for triple-negative breast cancer. Clin Cancer Res. 2010;16(19):4702–10. doi: 10.1158/1078-0432.CCR-10-0939. http://dx.doi.org/10.1158/1078-0432.CCR-10-0939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 175.Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN, Friedlander M, Arun B, Loman N, Schmutzler RK, Wardley A, Mitchell G, Earl H, Wickens M, Carmichael J. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet. 2010;376(9737):235–44. doi: 10.1016/S0140-6736(10)60892-6. http://dx.doi.org/10.1016/S0140-6736(10)60892-6. [DOI] [PubMed] [Google Scholar]
  • 176.Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, Mortimer P, Swaisland H, Lau A, O’Connor MJ, Ashworth A, Carmichael J, Kaye SB, Schellens JH, de Bono JS. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361(2):123–34. doi: 10.1056/NEJMoa0900212. http://dx.doi.org/10.1056/NEJMoa0900212. [DOI] [PubMed] [Google Scholar]
  • 177.Stecklein SR, Kumaraswamy E, Behbod F, Wang W, Chaguturu V, Harlan-Williams LM, Jensen RA. BRCA1 and HSP90 cooperate in homologous and non-homologous DNA double-strand-break repair and G2/M checkpoint activation. Proc Natl Acad Sci U S A. 2012;109(34):13650–5. doi: 10.1073/pnas.1203326109. http://dx.doi.org/10.1073/pnas.1203326109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 178.Agarwal R, Kaye SB. Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer. 2003;3(7):502–16. doi: 10.1038/nrc1123. http://dx.doi.org/10.1038/nrc1123. [DOI] [PubMed] [Google Scholar]
  • 179.Cass I, Baldwin RL, Varkey T, Moslehi R, Narod SA, Karlan BY. Improved survival in women with BRCA-associated ovarian carcinoma. Cancer. 2003;97(9):2187–95. doi: 10.1002/cncr.11310. http://dx.doi.org/10.1002/cncr.11310. [DOI] [PubMed] [Google Scholar]
  • 180.Chetrit A, Hirsh-Yechezkel G, Ben-David Y, Lubin F, Friedman E, Sadetzki S. Effect of BRCA1/2 mutations on long-term survival of patients with invasive ovarian cancer: the national Israeli study of ovarian cancer. J Clin Oncol. 2008;26(1):20–5. doi: 10.1200/JCO.2007.11.6905. http://dx.doi.org/10.1200/JCO.2007.11.6905. [DOI] [PubMed] [Google Scholar]
  • 181.Sakai W, Swisher EM, Karlan BY, Agarwal MK, Higgins J, Friedman C, Villegas E, Jacquemont C, Farrugia DJ, Couch FJ, Urban N, Taniguchi T. Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature. 2008;451(7182):1116–20. doi: 10.1038/nature06633. http://dx.doi.org/10.1038/nature06633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 182.Swisher EM, Sakai W, Karlan BY, Wurz K, Urban N, Taniguchi T. Secondary BRCA1 mutations in BRCA1-mutated ovarian carcinomas with platinum resistance. Cancer Res. 2008;68(8):2581–6. doi: 10.1158/0008-5472.CAN-08-0088. http://dx.doi.org/10.1158/0008-5472.CAN-08-0088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 183.Sakai W, Swisher EM, Jacquemont C, Chandramohan KV, Couch FJ, Langdon SP, Wurz K, Higgins J, Villegas E, Taniguchi T. Functional restoration of BRCA2 protein by secondary BRCA2 mutations in BRCA2-mutated ovarian carcinoma. Cancer Res. 2009;69(16):6381–6. doi: 10.1158/0008-5472.CAN-09-1178. http://dx.doi.org/10.1158/0008-5472.CAN-09-1178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 184.Edwards SL, Brough R, Lord CJ, Natrajan R, Vatcheva R, Levine DA, Boyd J, Reis-Filho JS, Ashworth A. Resistance to therapy caused by intragenic deletion in BRCA2. Nature. 2008;451(7182):1111–5. doi: 10.1038/nature06548. http://dx.doi.org/10.1038/nature06548. [DOI] [PubMed] [Google Scholar]
  • 185.Dhillon KK, Swisher EM, Taniguchi T. Secondary mutations of BRCA1/2 and drug resistance. Cancer Sci. 2011;102(4):663–9. doi: 10.1111/j.1349-7006.2010.01840.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 186.Rabik CA, Dolan ME. Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev. 2007;33(1):9–23. doi: 10.1016/j.ctrv.2006.09.006. http://dx.doi.org/10.1016/j.ctrv.2006.09.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 187.McVey M, Lee SE. MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet. 2008;24(11):529–38. doi: 10.1016/j.tig.2008.08.007. http://dx.doi.org/10.1016/j.tig.2008.08.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 188.Xie K, Doles J, Hemann MT, Walker GC. Error-prone translesion synthesis mediates acquired chemoresistance. Proc Natl Acad Sci U S A. 2010;107(48):20792–7. doi: 10.1073/pnas.1011412107. http://dx.doi.org/10.1073/pnas.1011412107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 189.Jacquemont C, Taniguchi T. Proteasome function is required for DNA damage response and fanconi anemia pathway activation. Cancer Res. 2007;67(15):7395–405. doi: 10.1158/0008-5472.CAN-07-1015. http://dx.doi.org/10.1158/0008-5472.CAN-07-1015. [DOI] [PubMed] [Google Scholar]
  • 190.Deans AJ, Khanna KK, McNees CJ, Mercurio C, Heierhorst J, McArthur GA. Cyclin-dependent kinase 2 functions in normal DNA repair and is a therapeutic target in BRCA1-deficient cancers. Cancer Res. 2006;66(16):8219–26. doi: 10.1158/0008-5472.CAN-05-3945. http://dx.doi.org/10.1158/0008-5472.CAN-05-3945. [DOI] [PubMed] [Google Scholar]
  • 191.Dungey FA, Caldecott KW, Chalmers AJ. Enhanced radiosensitization of human glioma cells by combining inhibition of poly(ADP-ribose) polymerase with inhibition of heat shock protein 90. Mol Cancer Ther. 2009;8(8):2243–54. doi: 10.1158/1535-7163.MCT-09-0201. [DOI] [PMC free article] [PubMed] [Google Scholar]

RESOURCES