Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Sep;73(9):2966–2968. doi: 10.1073/pnas.73.9.2966

Ultraviolet photoelectron studies of biological purines: the valence electronic structure of adenine.

S Peng, A Padva, P R LeBreton
PMCID: PMC430894  PMID: 1067595

Abstract

The UV photoelectron spectra of adenine, 9-methyladenine, and 6-methylaminopurine contain highly resolved bands arising from the six highest occupied molecular orbitals. The spectra have been analyzed using UV absorption data, photoelectron data from previous studies of heterocyclic compounds, and results from both semi-empirical and ab initio molecular orbital calculations. The analysis indicates that the first, third, and fifth photoelectron bands in adenine and the two methyl substituted derivatives arise from pi orbitals. The second, fourth, and sixth bands arise from nitrogen atom lone-pair orbitals. Compared to adenine, the six uppermost orbitals of 9-methyladenine and 6-methylaminopurine have lower ionization potentials. This destabilization of the valence electrons is expected to play an important role in causing the increase in base stacking forces observed in methyl substituted adenines.

Full text

PDF
2968

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bugg C. E., Thomas J. M., Sundaralingam M., Rao S. T. Stereochemistry of nucleic acids and their constituents. X. Solid-state base-stacking patterns in nucleic acid constituents and polynucleotides. Biopolymers. 1971;10(1):175–219. doi: 10.1002/bip.360100113. [DOI] [PubMed] [Google Scholar]
  2. Chenon M. T., Pugmire R. J., Grant D. M., Panzica R. P., Townsend L. B. Carbon-13 magnetic resonance. XXVI. A quantitative determination of the tautomeric populations of certain purines. J Am Chem Soc. 1975 Aug 6;97(16):4636–4642. doi: 10.1021/ja00849a028. [DOI] [PubMed] [Google Scholar]
  3. DEVOE H., TINOCO I., Jr The stability of helical polynucleotides: base contributions. J Mol Biol. 1962 Jun;4:500–517. doi: 10.1016/s0022-2836(62)80105-3. [DOI] [PubMed] [Google Scholar]
  4. Dreyfus M., Dodin G., Bensaude O., Dubois J. E. Tautomerism of purines. I. N(7)H in equilibrium N(9)H equilibrium in adenine. J Am Chem Soc. 1975 Apr 30;97(9):2369–2376. doi: 10.1021/ja00842a011. [DOI] [PubMed] [Google Scholar]
  5. Hanlon S. The importance of London dispersion forces in the maintenance of the deoxyribonucleic acid helix. Biochem Biophys Res Commun. 1966 Jun 21;23(6):861–867. doi: 10.1016/0006-291x(66)90567-5. [DOI] [PubMed] [Google Scholar]
  6. Hug W., Tinoco I., Jr Electronic spectra of nucleic acid bases. I. Interpretation of the in-plane spectra with the aid of all valence electron MO-CI calculations. J Am Chem Soc. 1973 May 2;95(9):2803–2813. doi: 10.1021/ja00790a010. [DOI] [PubMed] [Google Scholar]
  7. Padva A., LeBreton P. R., Dinerstein R. J., Ridyard J. N. UV photoelectron studies of biological pyrimidines: the electronic structure of uracil. Biochem Biophys Res Commun. 1974 Oct 23;60(4):1262–1268. doi: 10.1016/0006-291x(74)90334-9. [DOI] [PubMed] [Google Scholar]
  8. Pullman A. The electronic structure of purines and pyrimidines. Ann N Y Acad Sci. 1969 May 16;158(1):65–85. doi: 10.1111/j.1749-6632.1969.tb56214.x. [DOI] [PubMed] [Google Scholar]
  9. Sternglanz H., Bugg C. E. Conformations of N6-monosubstituted adenine derivatives. Crystal structure of N6-methyladenine. Biochim Biophys Acta. 1973 Apr 21;308(7):1–8. doi: 10.1016/0005-2787(73)90115-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES