Abstract
Initiation factor IF-E3 from rabbit reticulocytes was isolated from a high salf extract of ribosomes prepared according to the procedure of Schreier and Staehelin (J. Mol9 Biol, 73, 329-349, 1973). The factor was highly purified from the crude extract by ammonium sulfate fractionation, sucrose gradient centrifugation, salf gradient elution from DEAE-cellulose and phosphocellulose columns, and glycerol gradient centrifugation. IF-E3 stimulated cell-free protein synthesis dependent on an exogenous globin mRNA fraction 4- to 5-fold. The factor under nondenaturing conditions behaved as a large multipolypeptide complex, but was separated into 11 major protein components by two-dimensional polyacrylamide gel electrophoresis with urea and sodium dodecyl sulfate. The stoichiometry and molecular weights (range: 28,000-140,000) of the IF-E3 proteins were determined. None of the components corresponded to ribosomal proteins found in high salt-washed ribosomes. 14CH3-IF-E3 was prepared by reductive alkylation without detectable loss of its initiation factor activity, and bound stoichiometrically to 40S ribosomal subunits, but not to 60S or 80S ribosomes. 14CH3-IF-E3 isolated from the 40S complex contained only nine of the 11 original protein components.
Full text
PDF![3005](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f420/430909/549ad3a04a99/pnas00039-0067.png)
![3006](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f420/430909/090a243e8aa6/pnas00039-0068.png)
![3007](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f420/430909/83d371ec4868/pnas00039-0069.png)
![3008](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f420/430909/c8d732f4af42/pnas00039-0070.png)
![3009](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f420/430909/da91db24a8fc/pnas00039-0071.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams S. L., Safer B., Anderson W. F., Merrick W. C. Eukaryotic initiation complex formation. Evidence for two distinct pathways. J Biol Chem. 1975 Dec 10;250(23):9083–9089. [PubMed] [Google Scholar]
- Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
- Falvey A. K., Staehelin T. Structure and function of mammalian ribosomes. I. Isolation and characterization of active liver ribosomal subunits. J Mol Biol. 1970 Oct 14;53(1):1–19. doi: 10.1016/0022-2836(70)90042-2. [DOI] [PubMed] [Google Scholar]
- Freienstein C., Blobel G. Nonribosomal proteins associated with eukaryotic native small ribosomal subunits. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3392–3396. doi: 10.1073/pnas.72.9.3392. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hardy S. J., Kurland C. G., Voynow P., Mora G. The ribosomal proteins of Escherichia coli. I. Purification of the 30S ribosomal proteins. Biochemistry. 1969 Jul;8(7):2897–2905. doi: 10.1021/bi00835a031. [DOI] [PubMed] [Google Scholar]
- Issinger O. G., Kiefer M. C., Traut R. R. Specificity of ATP-dependent and GTP-dependent protein kinases with respect to ribosomal proteins of Escherichia coli. Eur J Biochem. 1975 Nov 1;59(1):137–143. doi: 10.1111/j.1432-1033.1975.tb02434.x. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Levin D. H., Kyner D., Acs G. Protein initiation in eukaryotes: formation and function of a ternary complex composed of a partially purified ribosomal factor, methionyl transfer RNA, and guanosine triphosphate. Proc Natl Acad Sci U S A. 1973 Jan;70(1):41–45. doi: 10.1073/pnas.70.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levin D. H., Kyner D., Acs G. Protein synthesis initiation in eukaryotes. Characterization of ribosomal factors from mouse fibroblasts. J Biol Chem. 1973 Sep 25;248(18):6416–6425. [PubMed] [Google Scholar]
- Mets L. J., Bogorad L. Two-dimensional polyacrylamide gel electrophoresis: an improved method for ribosomal proteins. Anal Biochem. 1974 Jan;57(1):200–210. doi: 10.1016/0003-2697(74)90065-7. [DOI] [PubMed] [Google Scholar]
- Mizushima S., Nomura M. Assembly mapping of 30S ribosomal proteins from E. coli. Nature. 1970 Jun 27;226(5252):1214–1214. doi: 10.1038/2261214a0. [DOI] [PubMed] [Google Scholar]
- Schreier M. H., Staehelin T. Initiation of eukaryotic protein synthesis: (Met-tRNA f -40S ribosome) initiation complex catalysed by purified initiation factors in the absence of mRNA. Nat New Biol. 1973 Mar 14;242(115):35–38. doi: 10.1038/newbio242035a0. [DOI] [PubMed] [Google Scholar]
- Schreier M. H., Staehelin T. Initiation of mammalian protein synthesis: the importance of ribosome and initiation factor quality for the efficiency of in vitro systems. J Mol Biol. 1973 Feb 19;73(3):329–349. doi: 10.1016/0022-2836(73)90346-x. [DOI] [PubMed] [Google Scholar]
- Sundkvist I. C., Staehelin T. Structure and function of free 40 S ribosome subunits: Characterization of initiation factors. J Mol Biol. 1975 Dec 15;99(3):401–418. doi: 10.1016/s0022-2836(75)80135-5. [DOI] [PubMed] [Google Scholar]
- Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]