Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Sep;73(9):3103–3106. doi: 10.1073/pnas.73.9.3103

Isolation of a set of hybrid lac repressors made in vitro between normal lac repressor and its homogeneous tryptic core.

N Geisler, K Weber
PMCID: PMC430944  PMID: 787984

Abstract

Lactose repressor can be renatured from 8 M guanidine-HCl solution. The renatured repressor is tetrameric and shows DNA binding activity. Thus it becomes possible to obtain hybrid tetramers in vitro between normal repressor and repressor defective in DNA binding by simultaneous denaturation and renaturation. In order to facilitate the separation of the different hybrids, we have used a lac repressor derivative that does not bind DNA, which is missing the amino-terminal 59 residues of the polypeptide chain (homogeneous tryptic core). The hybrids resulting from the mixed renaturation of homogeneous tryptic core and normal repressor can be separated by electrophoresis on Cellogel. The hybrids have been recovered, and a preliminary characterization of their DNA-binding properties is reported.

Full text

PDF
3106

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beyreuther K., Adler K., Geisler N., Klemm A. The amino-acid sequence of lac repressor. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3576–3580. doi: 10.1073/pnas.70.12.3576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Files J. G., Weber K. Limited proteolytic digestion of lac repressor by trypsin. Chemical nature of the resulting trypsin-resistant core. J Biol Chem. 1976 Jun 10;251(11):3386–3391. [PubMed] [Google Scholar]
  3. Files J. G., Weber K., Miller J. H. Translational reinitiation: reinitiation of lac repressor fragments at three internal sites early in the lac i gene of Escherichia coli. Proc Natl Acad Sci U S A. 1974 Mar;71(3):667–670. doi: 10.1073/pnas.71.3.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ganem D., Miller J. H., Files J. G., Platt T., Weber K. Reinitiation of a lac repressor fragment at a codon other than AUG. Proc Natl Acad Sci U S A. 1973 Nov;70(11):3165–3169. doi: 10.1073/pnas.70.11.3165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  6. Müller-Hill B., Crapo L., Gilbert W. Mutants that make more lac repressor. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1259–1264. doi: 10.1073/pnas.59.4.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Platt T., Files J. G., Weber K. Lac repressor. Specific proteolytic destruction of the NH 2 -terminal region and loss of the deoxyribonucleic acid-binding activity. J Biol Chem. 1973 Jan 10;248(1):110–121. [PubMed] [Google Scholar]
  8. Riggs A. D., Bourgeois S., Cohn M. The lac repressor-operator interaction. 3. Kinetic studies. J Mol Biol. 1970 Nov 14;53(3):401–417. doi: 10.1016/0022-2836(70)90074-4. [DOI] [PubMed] [Google Scholar]
  9. Riggs A. D., Suzuki H., Bourgeois S. Lac repressor-operator interaction. I. Equilibrium studies. J Mol Biol. 1970 Feb 28;48(1):67–83. doi: 10.1016/0022-2836(70)90219-6. [DOI] [PubMed] [Google Scholar]
  10. Weber K., Platt T., Ganem D., Miller J. H. Altered sequences changing the operator-binding properties of the Lac repressor: colinearity of the repressor protein with the i-gene map. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3624–3628. doi: 10.1073/pnas.69.12.3624. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES