Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Oct;73(10):3443–3447. doi: 10.1073/pnas.73.10.3443

ATP-PPi exchange activity of progesterone receptor.

V K Moudgil, D O Toft
PMCID: PMC431131  PMID: 185612

Abstract

Progesterone receptor preparations from avian oviduct catalyze a pyrophosphate (PPi)-exchange reaction between ATP and 32P-labeled PPi. The reaction requires ATP exclusively and is Mn++-dependent. This enzyme activity is detectable in receptor preparations that have been purified extensively by chromatography on ATP-Sepharose and DEAE-Sephadex columns. Polyacrylamide gel electrophoresis of purified preparations reveals a comigration of [3H]progesterone-receptor complex and the enzyme activity. The PPi-exchange reaction is inhibited by both o-phenanthroline and rifamycin AF/013, which also block the nuclear binding of progesterone receptor. These findings indicate that progesterone receptor may be an enzyme or a subunit of an enzyme that is active in nucleotide metabolism.

Full text

PDF
3444

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cochet-Meilhac M., Chambon P. Animal DNA-dependent RNA polymerases. 11. Mechanism of the inhibition of RNA polymerases B by amatoxins. Biochim Biophys Acta. 1974 Jun 27;353(2):160–184. doi: 10.1016/0005-2787(74)90182-8. [DOI] [PubMed] [Google Scholar]
  2. Cranston J. W., Silber R., Malathi V. G., Hurwitz J. Studies on ribonucleic acid ligase. Characterization of an adenosine triphosphate-inorganic pyrophosphate exchange reaction and demonstration of an enzyme-adenylate complex with T4 bacteriophage-induced enzyme. J Biol Chem. 1974 Dec 10;249(23):7447–7456. [PubMed] [Google Scholar]
  3. Deutscher M. P., Kornberg A. Enzymatic synthesis of deoxyribonucleic acid. 28. The pyrophosphate exchange and pyrophosphorolysis reactions of deoxyribonucleic acid polymerase. J Biol Chem. 1969 Jun 10;244(11):3019–3028. [PubMed] [Google Scholar]
  4. EDMONDS M., ABRAMS R. Polynucleotide biosynthesis: formation of a sequence of adenylate units from adenosine triphosphate by an enzyme from thymus nuclei. J Biol Chem. 1960 Apr;235:1142–1149. [PubMed] [Google Scholar]
  5. FOX C. F., WEISS S. B. ENZYMATIC SYNTHESIS OF RIBONUCLEIC ACID. II. PROPERTIES OF THE DEOXYRIBONUCLEIC ACID-PRIMED REACTION WITH MICROCOCCUS LYSODEIKTICUS RIBONUCLEIC ACID POLYMERASE. J Biol Chem. 1964 Jan;239:175–185. [PubMed] [Google Scholar]
  6. Jacob S. T., Rose K. M. Inhibition of poly(A) polymerase by rifamycin derivatives. Nucleic Acids Res. 1974 Nov;1(11):1549–1559. doi: 10.1093/nar/1.11.1549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. King E. J. The colorimetric determination of phosphorus. Biochem J. 1932;26(2):292–297. doi: 10.1042/bj0260292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kornberg A. Active center of DNA polymerase. Science. 1969 Mar 28;163(3874):1410–1418. doi: 10.1126/science.163.3874.1410. [DOI] [PubMed] [Google Scholar]
  9. Krakow J. S., Fronk E. Azotobacter vinelandii ribonucleic acid polymerase. 8. Pyrophosphate exchange. J Biol Chem. 1969 Nov 10;244(21):5988–5993. [PubMed] [Google Scholar]
  10. Kuhn R. W., Schrader W. T., Smith R. G., O'Malley B. W. Progesterone binding components of chick oviduct. X. Purification by affinity chromatography. J Biol Chem. 1975 Jun 10;250(11):4220–4228. [PubMed] [Google Scholar]
  11. Loftfield R. B., Eigner E. A. Mechanism of action of amino acid transfer ribonucleic acid ligases. J Biol Chem. 1969 Apr 10;244(7):1746–1754. [PubMed] [Google Scholar]
  12. Lohmar P. H., Toft D. O. Inhibition of the binding of progesterone receptor to nuclei: effects of o-phenanthroline and rifamycin AF/013. Biochem Biophys Res Commun. 1975 Nov 3;67(1):8–15. doi: 10.1016/0006-291x(75)90275-2. [DOI] [PubMed] [Google Scholar]
  13. Lõvgren T. N., Heinonen J., Loftfield R. B. The mechanism of aminoacylation of transfer ribonucleic acid. Reactivity of enzyme-bound isoleucyl adenylate. J Biol Chem. 1975 May 25;250(10):3854–3860. [PubMed] [Google Scholar]
  14. Miller L. K., Diaz S. C., Sherman M. R. Steroid-receptor quantitation and characterization by electrophoresis in highly cross-linked polyacrylamide gels. Biochemistry. 1975 Oct 7;14(20):4433–4443. doi: 10.1021/bi00691a015. [DOI] [PubMed] [Google Scholar]
  15. Moudgil V. K., Toft D. O. Binding of ATP to the progesterone receptor. Proc Natl Acad Sci U S A. 1975 Mar;72(3):901–905. doi: 10.1073/pnas.72.3.901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rose K. M., Ruch P. A., Jacob S. T. Mechanism of inhibition of RNA polymerase II and poly(adenylic acid) polymerase by the O-n-octyloxime of 3-formylrifamycin SV. Biochemistry. 1975 Aug 12;14(16):3598–3604. doi: 10.1021/bi00687a013. [DOI] [PubMed] [Google Scholar]
  17. Schaffner W., Weissmann C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem. 1973 Dec;56(2):502–514. doi: 10.1016/0003-2697(73)90217-0. [DOI] [PubMed] [Google Scholar]
  18. Schrader W. T., Toft D. O., O'Malley B. W. Progesterone-binding protein of chick oviduct. VI. Interaction of purified progesterone-receptor components with nuclear constituents. J Biol Chem. 1972 Apr 25;247(8):2401–2407. [PubMed] [Google Scholar]
  19. Shyamala G. Is the estrogen receptor of mammary glands a metallo-protein? Biochem Biophys Res Commun. 1975 May 5;64(1):408–415. doi: 10.1016/0006-291x(75)90268-5. [DOI] [PubMed] [Google Scholar]
  20. Toft D., O'Malley B. W. Target tissue receptors for progesterone: the influence of estrogen treatment. Endocrinology. 1972 Apr;90(4):1041–1045. doi: 10.1210/endo-90-4-1041. [DOI] [PubMed] [Google Scholar]
  21. Tsai M. J., Saunders G. F. Action of rifamycin derivatives on RNA polymerase of human leukemic lymphocytes. Proc Natl Acad Sci U S A. 1973 Jul;70(7):2072–2076. doi: 10.1073/pnas.70.7.2072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Von Der Haar F., Gaertner E. Phenylalanyl-tRNA synthetase from baker's yeast: role of 3'-terminal adenosine of tRNA-Phe in enzyme-substrate interaction studied with 3'-modified tRNA-Phe species. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1378–1382. doi: 10.1073/pnas.72.4.1378. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES