Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Oct;73(10):3471–3475. doi: 10.1073/pnas.73.10.3471

lac repressor: 3-fluorotyrosine substitution for nuclear magnetic resonance studies.

P Lu, M Jarema, K Mosser, W E Daniel
PMCID: PMC431137  PMID: 790386

Abstract

This paper describes the isolation of 3-fluorotyrosine-substituted lac repressor, and its 19F nuclear magnetic resonance spectrum. From the spectrum, one can conclude that for each of the four identical subunits of the repressor there are four or five surface tyrosines, two buried or internal tyrosines, and one tyrosine with an phenolic group ionized or involved in a hydrogen bond. Conditions are described that can be used for the 3-fluorotyrosine substitution of a variety of Escherichia coli proteins for 19F nuclear magnetic resonance studies.

Full text

PDF
3471

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. A., Nakashima Y., Coleman J. E. Chemical modifications of functional residues of fd gene 5 DNA-binding protein. Biochemistry. 1975 Mar 11;14(5):907–917. doi: 10.1021/bi00676a006. [DOI] [PubMed] [Google Scholar]
  2. Beyreuther K., Adler K., Geisler N., Klemm A. The amino-acid sequence of lac repressor. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3576–3580. doi: 10.1073/pnas.70.12.3576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bourgeois S., Pfahl M. Repressors. Adv Protein Chem. 1976;30:1–99. doi: 10.1016/s0065-3233(08)60478-7. [DOI] [PubMed] [Google Scholar]
  4. Browne D. T., Otvos J. D. 4-Fluorotryptophan alkaline phosphatase from E. coli: preparation, properties, and 19F NMR spectrum. Biochem Biophys Res Commun. 1976 Feb 9;68(3):907–913. doi: 10.1016/0006-291x(76)91231-6. [DOI] [PubMed] [Google Scholar]
  5. Fanning T. G. Iodination of Escherichia coli lac repressor. Effect of tyrosine modification on repressor activity. Biochemistry. 1975 Jun 3;14(11):2512–2520. doi: 10.1021/bi00682a034. [DOI] [PubMed] [Google Scholar]
  6. Gilbert W., Maxam A. The nucleotide sequence of the lac operator. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3581–3584. doi: 10.1073/pnas.70.12.3581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hagen D. C., Magasanik B. Isolation of the self-regulated repressor protein of the Hut operons of Salmonella typhimurium. Proc Natl Acad Sci U S A. 1973 Mar;70(3):808–812. doi: 10.1073/pnas.70.3.808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hull W. E., Sykes B. D. Fluorine-19 nuclear magnetic resonance study of fluorotyrosine alkaline phosphatase: the influence of zinc on protein structure and a conformational change induced by phosphate binding. Biochemistry. 1976 Apr 6;15(7):1535–1546. doi: 10.1021/bi00652a027. [DOI] [PubMed] [Google Scholar]
  9. Hull W. E., Sykes B. D. Fluorotyrosine alkaline phosphatase. 19F nuclear magnetic resonance relaxation times and molecular motion of the individual fluorotyrosines. Biochemistry. 1974 Aug 13;13(17):3431–3437. doi: 10.1021/bi00714a002. [DOI] [PubMed] [Google Scholar]
  10. Hull W. E., Sykes B. D. Fluorotyrosine alkaline phosphatase: internal mobility of individual tyrosines and the role of chemical shift anisotropy as a 19F nuclear spin relaxation mechanism in proteins. J Mol Biol. 1975 Oct 15;98(1):121–153. doi: 10.1016/s0022-2836(75)80105-7. [DOI] [PubMed] [Google Scholar]
  11. Jaskunas S. R., Burgess R. R., Nomura M. Identification of a gene for the alpha-subunit of RNA polymerase at the str-spc region of the Escherichia coli chromosome. Proc Natl Acad Sci U S A. 1975 Dec;72(12):5036–5040. doi: 10.1073/pnas.72.12.5036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Konrad B., Kirschbaum J., Austin S. Isolation and characterization of phi80 transducing bacteriophage for a ribonucleic acid polymerase gene. J Bacteriol. 1973 Nov;116(2):511–516. doi: 10.1128/jb.116.2.511-516.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lu P., Rich A. The nature of the polypeptide chain termination signal. J Mol Biol. 1971 Jun 14;58(2):513–531. doi: 10.1016/0022-2836(71)90368-8. [DOI] [PubMed] [Google Scholar]
  14. MUNIER R. L., SARRAZIN G. [Total substitution of 3-fluorotyrosine for tyrosine in Escherichia coli proteins]. C R Hebd Seances Acad Sci. 1963 Apr 8;256:3376–3378. [PubMed] [Google Scholar]
  15. McCord T. J., Smith D. R., Winters D. W., Grimes J. F., Hulme K. L., Robinson L. Q., Gage L. D., Davis A. L. Synthesis and microbiological activities of some monohalogenated analogs of tyrosine. J Med Chem. 1975 Jan;18(1):26–29. doi: 10.1021/jm00235a006. [DOI] [PubMed] [Google Scholar]
  16. Parks J. S., Gottesman M., Shimada K., Weisberg R. A., Perlman R. L., Pastan I. Isolation of the gal repressor. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1891–1895. doi: 10.1073/pnas.68.8.1891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Platt T., Files J. G., Weber K. Lac repressor. Specific proteolytic destruction of the NH 2 -terminal region and loss of the deoxyribonucleic acid-binding activity. J Biol Chem. 1973 Jan 10;248(1):110–121. [PubMed] [Google Scholar]
  18. Pratt E. A., Ho C. Incorporation of fluorotryptophans into proteins of escherichia coli. Biochemistry. 1975 Jul;14(13):3035–3040. doi: 10.1021/bi00684a037. [DOI] [PubMed] [Google Scholar]
  19. Riggs A. D., Bourgeois S., Cohn M. The lac repressor-operator interaction. 3. Kinetic studies. J Mol Biol. 1970 Nov 14;53(3):401–417. doi: 10.1016/0022-2836(70)90074-4. [DOI] [PubMed] [Google Scholar]
  20. SMITH L. C., RAVEL J. M., LAX S. R., SHIVE W. THE EFFECTS OF PHENYLALANINE AND TYROSINE ANALOGS ON THE SYNTHESIS AND ACTIVITY OF 3-DEOXY-D-ARABINO-HEPTULOSONIC ACID 7-PHOSPHATE SYNTHETASES. Arch Biochem Biophys. 1964 May;105:424–430. doi: 10.1016/0003-9861(64)90026-8. [DOI] [PubMed] [Google Scholar]
  21. Sommer H., Lu P. Lac Repressor. Fluorescence of the two tryptophans. J Biol Chem. 1976 Jun 25;251(12):3774–3779. [PubMed] [Google Scholar]
  22. Sykes B. D., Weingarten H. I., Schlesinger M. J. Fluorotyrosine alkaline phosphatase from Escherichia coli: preparation, properties, and fluorine-19 nuclear magnetic resonance spectrum. Proc Natl Acad Sci U S A. 1974 Feb;71(2):469–473. doi: 10.1073/pnas.71.2.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vandekerckhove J., Van Montagu M. Sequence analysis of fluorescamine-stained peptides and proteins purified on a nanomole scale. Application to proteins of bacteriophage MS2. Eur J Biochem. 1974 May 2;44(1):279–288. doi: 10.1111/j.1432-1033.1974.tb03483.x. [DOI] [PubMed] [Google Scholar]
  24. Wallace B. J., Pittard J. Regulation of 3-deoxy-D-arabino-heptulosonic 7-phosphate acid synthetase activity in relation to the synthesis of the aromatic vitamins in Escherichia coli K-12. J Bacteriol. 1969 Sep;99(3):707–712. doi: 10.1128/jb.99.3.707-712.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wilcox G., Clemetson K. J., Santi D. V., Englesberg E. Purification of the araC protein. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2145–2148. doi: 10.1073/pnas.68.9.2145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zubay G., Morse D. E., Schrenk W. J., Miller J. H. Detection and isolation of the repressor protein for the tryptophan operon of Escherichia coli. Proc Natl Acad Sci U S A. 1972 May;69(5):1100–1103. doi: 10.1073/pnas.69.5.1100. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES