Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Feb 15;91(4):1290–1293. doi: 10.1073/pnas.91.4.1290

Selenol binds to iron in nitrogenase iron-molybdenum cofactor: an extended x-ray absorption fine structure study.

S D Conradson 1, B K Burgess 1, W E Newton 1, A Di Cicco 1, A Filipponi 1, Z Y Wu 1, C R Natoli 1, B Hedman 1, K O Hodgson 1
PMCID: PMC43143  PMID: 8108404

Abstract

The biological N2-fixation reaction is catalyzed by the enzyme nitrogenase. The metal cluster active site of this enzyme, the iron-molybdenum cofactor (FeMoco), can be studied either while bound within the MoFe protein component of nitrogenase or after it has been extracted into N-methylformamide. The two species are similar but not identical. For example, the addition of thiophenol or selenophenol to isolated FeMoco causes its rather broad S = 3/2 electron paramagnetic resonance signal to sharpen and more closely approach the signal exhibited by protein-bound FeMoco. The nature of this thiol/selenol binding site has been investigated by using Se-K edge extended x-ray absorption fine structure (EXAFS) to study selenophenol ligated to FeMoco, and the results are reported here. EXAFS data analysis at the ligand Se-K edge was performed with a set of software, GNXAS, that provides for direct calculation of the theoretical EXAFS signals and least-squares fits to the experimental data. Data analysis results show definitively that the selenol (and by inference thiol) binds to Fe at a distance of 2.4 A. In contrast, unacceptable fits are obtained with either Mo or S as the liganded atom (instead of Fe). These results provide quantitative details about an exchangeable thiol/selenol binding site on FeMoco in its isolated, solution state and establish an Fe atom as the site of this reaction. Furthermore, the utility of ligand-based EXAFS as a probe of coordination in polynuclear metal clusters is demonstrated.

Full text

PDF
1293

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arber J. M., Flood A. C., Garner C. D., Gormal C. A., Hasnain S. S., Smith B. E. Iron K-edge X-ray absorption spectroscopy of the iron-molybdenum cofactor of nitrogenase from Klebsiella pneumoniae. Biochem J. 1988 Jun 1;252(2):421–425. doi: 10.1042/bj2520421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bolin J. T., Ronco A. E., Morgan T. V., Mortenson L. E., Xuong N. H. The unusual metal clusters of nitrogenase: structural features revealed by x-ray anomalous diffraction studies of the MoFe protein from Clostridium pasteurianum. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):1078–1082. doi: 10.1073/pnas.90.3.1078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brigle K. E., Newton W. E., Dean D. R. Complete nucleotide sequence of the Azotobacter vinelandii nitrogenase structural gene cluster. Gene. 1985;37(1-3):37–44. doi: 10.1016/0378-1119(85)90255-0. [DOI] [PubMed] [Google Scholar]
  4. Brigle K. E., Setterquist R. A., Dean D. R., Cantwell J. S., Weiss M. C., Newton W. E. Site-directed mutagenesis of the nitrogenase MoFe protein of Azotobacter vinelandii. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7066–7069. doi: 10.1073/pnas.84.20.7066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burgess B. K., Jacobs D. B., Stiefel E. I. Large-scale purification of high activity Azotobacter vinelandII nitrogenase. Biochim Biophys Acta. 1980 Jul 10;614(1):196–209. doi: 10.1016/0005-2744(80)90180-1. [DOI] [PubMed] [Google Scholar]
  6. Burgess B. K., Stiefel E. I., Newton W. E. Oxidation-reduction properties and complexation reactions of the iron-molybdenum cofactor of nitrogenase. J Biol Chem. 1980 Jan 25;255(2):353–356. [PubMed] [Google Scholar]
  7. Chan M. K., Kim J., Rees D. C. The nitrogenase FeMo-cofactor and P-cluster pair: 2.2 A resolution structures. Science. 1993 May 7;260(5109):792–794. doi: 10.1126/science.8484118. [DOI] [PubMed] [Google Scholar]
  8. Conradson S. D., Burgess B. K., Holm R. H. Fluorine-19 chemical shifts as probes of the structure and reactivity of the iron-molybdenum cofactor of nitrogenase. J Biol Chem. 1988 Sep 25;263(27):13743–13749. [PubMed] [Google Scholar]
  9. Conradson S. D., Burgess B. K., Vaughn S. A., Roe A. L., Hedman B., Hodgson K. O., Holm R. H. Cyanide and methylisocyanide binding to the isolated iron-molybdenum cofactor of nitrogenase. J Biol Chem. 1989 Sep 25;264(27):15967–15974. [PubMed] [Google Scholar]
  10. Hawkes T. R., McLean P. A., Smith B. E. Nitrogenase from nifV mutants of Klebsiella pneumoniae contains an altered form of the iron-molybdenum cofactor. Biochem J. 1984 Jan 1;217(1):317–321. doi: 10.1042/bj2170317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kent H. M., Ioannidis I., Gormal C., Smith B. E., Buck M. Site-directed mutagenesis of the Klebsiella pneumoniae nitrogenase. Effects of modifying conserved cysteine residues in the alpha- and beta-subunits. Biochem J. 1989 Nov 15;264(1):257–264. doi: 10.1042/bj2640257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kim J., Rees D. C. Structural models for the metal centers in the nitrogenase molybdenum-iron protein. Science. 1992 Sep 18;257(5077):1677–1682. doi: 10.1126/science.1529354. [DOI] [PubMed] [Google Scholar]
  13. Mascharak P. K., Smith M. C., Armstrong W. H., Burgess B. K., Holm R. H. Fluorine-19 chemical shifts as structural probes of metal-sulfur clusters and the cofactor of nitrogenase. Proc Natl Acad Sci U S A. 1982 Nov;79(22):7056–7060. doi: 10.1073/pnas.79.22.7056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mustre de Leon J, Rehr JJ, Zabinsky SI, Albers RC. Ab initio curved-wave x-ray-absorption fine structure. Phys Rev B Condens Matter. 1991 Sep 1;44(9):4146–4156. doi: 10.1103/physrevb.44.4146. [DOI] [PubMed] [Google Scholar]
  15. Rawlings J., Shah V. K., Chisnell J. R., Brill W. J., Zimmermann R., Münck E., Orme-Johnson W. H. Novel metal cluster in the iron-molybdenum cofactor of nitrogenase. Spectroscopic evidence. J Biol Chem. 1978 Feb 25;253(4):1001–1004. [PubMed] [Google Scholar]
  16. Rehr JJ, Albers RC. Scattering-matrix formulation of curved-wave multiple-scattering theory: Application to x-ray-absorption fine structure. Phys Rev B Condens Matter. 1990 Apr 15;41(12):8139–8149. doi: 10.1103/physrevb.41.8139. [DOI] [PubMed] [Google Scholar]
  17. Scott D. J., May H. D., Newton W. E., Brigle K. E., Dean D. R. Role for the nitrogenase MoFe protein alpha-subunit in FeMo-cofactor binding and catalysis. Nature. 1990 Jan 11;343(6254):188–190. doi: 10.1038/343188a0. [DOI] [PubMed] [Google Scholar]
  18. Shah V. K., Brill W. J. Isolation of an iron-molybdenum cofactor from nitrogenase. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3249–3253. doi: 10.1073/pnas.74.8.3249. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES