Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Dec;73(12):4354–4358. doi: 10.1073/pnas.73.12.4354

Dopamine receptors in human and calf brains, using [3H]apomorphine and an antipsychotic drug.

P Seeman, M Chau-Wong, J Tedesco, K Wong
PMCID: PMC431452  PMID: 12505

Abstract

In order to develop a better dopamine receptor radioligand, [3H[apomorphine was prepared and tested for dopamine-like binding properties in both calf and human brain tissues. Specific binding of [3H]apomorphine was defined as that binding which occurred in the presence of 1 muM (-)-butaclamol (an inactive neuroleptic) minus that occurring in the presence of 1 muM (+)-butaclamol (active neuroleptic). The specific binding was saturable, the number of sites being double that of specific [3H]dopamine binding, and occurred primarily in dopamine-rich regions of postmortem human brains. The binding had a dissociation constant of 0.9 nM for human caudate (2 nM for calf caudate) and was blocked by dopamine and norepinephrine, but not by isoproterenol or (-)-propranolol, distinguishing it from a beta-adrenergic receptor. Since there was little desorption of [3H]apomorphine, the ligand permits extensive washing during routine assays for dopamine receptors, and facilitates biochemical purification of the receptor.

Full text

PDF
4355

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andén N. E., Rubenson A., Fuxe K., Hökfelt T. Evidence for dopamine receptor stimulation by apomorphine. J Pharm Pharmacol. 1967 Sep;19(9):627–629. doi: 10.1111/j.2042-7158.1967.tb09604.x. [DOI] [PubMed] [Google Scholar]
  2. Bennett J. P., Jr, Snyder S. H. Serotonin and lysergic acid diethylamide binding in rat brain membranes: relationship to postsynaptic serotonin receptors. Mol Pharmacol. 1976 May;12(3):373–389. [PubMed] [Google Scholar]
  3. Bruderlein F. T., Humber L. G. Neuroleptic agents of the benzocycloheptapyridoisoquinoline series. 1. Syntheses and stereochemical and structural requirements for activity of butaclamol and related compounds. J Med Chem. 1975 Feb;18(2):185–188. doi: 10.1021/jm00236a016. [DOI] [PubMed] [Google Scholar]
  4. Burt D. R., Enna S. J., Creese I., Snyder S. H. Dopamine receptor binding in the corpus striatum of mammalian brain. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4655–4659. doi: 10.1073/pnas.72.11.4655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carenzi A., Gillin J. C., Guidotti A., Schwartz M. A., Trabucchi M., Wyatt R. J. Dopamine-sensitive adenylyl cyclase in human caudate nucleus. A study in control subjects and schizophrenic patients. Arch Gen Psychiatry. 1975 Aug;32(8):1056–1059. doi: 10.1001/archpsyc.1975.01760260120010. [DOI] [PubMed] [Google Scholar]
  6. Caron M. G., Lefkowitz R. J. Solubilization and characterization of the beta-adrenergic receptor binding sites of frog erythrocytes. J Biol Chem. 1976 Apr 25;251(8):2374–2384. [PubMed] [Google Scholar]
  7. Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
  8. Christiansen J., Squires R. F. Antagonistic effects of apomorphine and haloperidol on rat striatal synaptosomal tyrosine hydroxylase. J Pharm Pharmacol. 1974 May;26(5):367–369. doi: 10.1111/j.2042-7158.1974.tb09293.x. [DOI] [PubMed] [Google Scholar]
  9. Clement-Cormier Y. C., Kebabian J. W., Petzold G. L., Greengard P. Dopamine-sensitive adenylate cyclase in mammalian brain: a possible site of action of antipsychotic drugs. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1113–1117. doi: 10.1073/pnas.71.4.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Creese I., Burt D. R., Snyder S. H. Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science. 1976 Apr 30;192(4238):481–483. doi: 10.1126/science.3854. [DOI] [PubMed] [Google Scholar]
  11. Creese I., Burt D. R., Synder S. H. The dopamine receptor: differential binding of d-LSD and related agents to agonist and antagonist states. Life Sci. 1975 Dec 1;17(11):1715–1719. doi: 10.1016/0024-3205(75)90118-6. [DOI] [PubMed] [Google Scholar]
  12. Ernst A. M. Mode of action of apomorphine and dexamphetamine on gnawing compulsion in rats. Psychopharmacologia. 1967;10(4):316–323. doi: 10.1007/BF00403900. [DOI] [PubMed] [Google Scholar]
  13. Goldstein A., Lowney L. I., Pal B. K. Stereospecific and nonspecific interactions of the morphine congener levorphanol in subcellular fractions of mouse brain. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1742–1747. doi: 10.1073/pnas.68.8.1742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hitzemann R. J., Loh H. H. Effect of morphine on the transport of dopamine into mouse brain slices. Eur J Pharmacol. 1973 Feb;21(2):121–129. doi: 10.1016/0014-2999(73)90216-1. [DOI] [PubMed] [Google Scholar]
  15. Horn A. S., Post M. L., Kennard O. Dopamine receptor blockade and the neuroleptics, a crystallographic study. J Pharm Pharmacol. 1975 Aug;27(8):553–563. doi: 10.1111/j.2042-7158.1975.tb09506.x. [DOI] [PubMed] [Google Scholar]
  16. Hornykiewicz O. Dopamine (3-hydroxytyramine) and brain function. Pharmacol Rev. 1966 Jun;18(2):925–964. [PubMed] [Google Scholar]
  17. Iversen L. L. Dopamine receptors in the brain. Science. 1975 Jun 13;188(4193):1084–1089. doi: 10.1126/science.2976. [DOI] [PubMed] [Google Scholar]
  18. Jacobson G., Baldessarini R. J., Manschreck T. Tardive and withdrawal dyskinesia associated with haloperidol. Am J Psychiatry. 1974 Aug;131(8):910–913. doi: 10.1176/ajp.131.8.910. [DOI] [PubMed] [Google Scholar]
  19. Karobath M., Leitich H. Antipsychotic drugs and dopamine-stimulated adenylate cyclase prepared from corpus striatum of rat brain. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2915–2918. doi: 10.1073/pnas.71.7.2915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kwant W. O., Seeman P. The displacement of membrane calcium by a local anesthetic (chlorpromazine). Biochim Biophys Acta. 1969;193(2):338–349. doi: 10.1016/0005-2736(69)90194-1. [DOI] [PubMed] [Google Scholar]
  21. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  22. Lippmann W., Pugsley T., Merker J. Effect of butaclamol and its enantiomers upon striatal homovanillic acid and adenyl cyclase of olfactory tubercle in rats. Life Sci. 1975 Jan 15;16(2):213–224. doi: 10.1016/0024-3205(75)90019-3. [DOI] [PubMed] [Google Scholar]
  23. Matthysse S. Antipsychotic drug actions: a clue to the neuropathology of schizophrenia? Fed Proc. 1973 Feb;32(2):200–205. [PubMed] [Google Scholar]
  24. Meltzer H. Y., Fang V. S. The effect of neuroleptics on serum prolactin in schizophrenic patients. Arch Gen Psychiatry. 1976 Mar;33(3):279–286. doi: 10.1001/archpsyc.1976.01770030003001. [DOI] [PubMed] [Google Scholar]
  25. Mielke D. H., Gallant D. M., Oelsner T., Kessler C. M., Tomlinson W. K., Cohen G. H. Butaclamol hydrochloride (AY-23,028): an early evaluation in severely ill schizophrenics. Dis Nerv Syst. 1975 Jan;36(1):7–8. [PubMed] [Google Scholar]
  26. Seeman P. M. Membrane stabilization by drugs: tranquilizers, steroids, and anesthetics. Int Rev Neurobiol. 1966;9:145–221. doi: 10.1016/s0074-7742(08)60138-5. [DOI] [PubMed] [Google Scholar]
  27. Seeman P., Chau-Wong M., Tedesco J., Wong K. Brain receptors for antipsychotic drugs and dopamine: direct binding assays. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4376–4380. doi: 10.1073/pnas.72.11.4376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Seeman P., Lee T., Chau-Wong M., Wong K. Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature. 1976 Jun 24;261(5562):717–719. doi: 10.1038/261717a0. [DOI] [PubMed] [Google Scholar]
  29. Seeman P., Lee T. Enhanced binding of chlorpromazine to cholesterol-depleted synaptosome fractions. Can J Physiol Pharmacol. 1974 Jun;52(3):522–525. doi: 10.1139/y74-069. [DOI] [PubMed] [Google Scholar]
  30. Seeman P., Roth S., Schneider H. The membrane concentrations of alcohol anesthetics. Biochim Biophys Acta. 1971 Feb 2;225(2):171–184. doi: 10.1016/0005-2736(71)90210-0. [DOI] [PubMed] [Google Scholar]
  31. Seeman P., Staiman A., Chau-Wong M. The nerve impulse-blocking actions of tranquilizers and the binding of neuroleptics to synaptosome membranes. J Pharmacol Exp Ther. 1974 Jul;190(1):123–130. [PubMed] [Google Scholar]
  32. Seeman P. The membrane actions of anesthetics and tranquilizers. Pharmacol Rev. 1972 Dec;24(4):583–655. [PubMed] [Google Scholar]
  33. Snyder S. H. The dopamine hypothesis of schizophrenia: focus on the dopamine receptor. Am J Psychiatry. 1976 Feb;133(2):197–202. doi: 10.1176/ajp.133.2.197. [DOI] [PubMed] [Google Scholar]
  34. Voith K., Herr F. The behavioral pharmacology of butaclamol hydrochloride (AY-23,028), a new potent neuroleptic drug. Psychopharmacologia. 1975 Apr 30;42(1):11–20. doi: 10.1007/BF00428819. [DOI] [PubMed] [Google Scholar]
  35. Williams L. T., Snyderman R., Lefkowitz R. J. Identification of beta-adrenergic receptors in human lymphocytes by (-) (3H) alprenolol binding. J Clin Invest. 1976 Jan;57(1):149–155. doi: 10.1172/JCI108254. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES