Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1977 Aug;74(8):3208–3212. doi: 10.1073/pnas.74.8.3208

Identification of β,β-turns and unordered conformations in polypeptide chains by vacuum ultraviolet circular dichroism

S Brahms *, J Brahms *, G Spach , A Brack
PMCID: PMC431499  PMID: 269385

Abstract

Different conformations of polypeptides were characterized by measurements of the circular dichroism (CD) extended into the vacuum ultraviolet region. (i) The linear β-pleated sheet structure was characterized in a broad ultraviolet region down to 165 nm by examination of copolypeptides composed of alternating hydrophobic and hydrophilic amino-acid residues, e.g., poly(Lys-Leu-Lys-Leu). A short-wavelength intense band was found at about 169 nm, which is characteristic of β-pleated sheet conformation. (ii) The β-turns were experimentally measured using poly(Ala2-Gly2) in a broad spectral region down to 165 nm with accuracy. The observed CD spectrum is in excellent qualitative agreement with the theoretical curve calculated by Woody for the β-turns of type II and/or I of Venkatachalam. The similarity in shape between the theoretical curve and the observed CD spectra suggests a dominance of β-turn segments in the poly(Ala2-Gly2) structure. The presence of β-turns in poly(Ala2-Gly2) is also in agreement with the characterization of this polypeptide by solid state methods (electron microscopy and x-ray diffraction). The CD spectrum of β-turns is characterized by a very intense band at 207.5 nm and strong negative bands at 191 and 169 nm. Copolypeptides such as poly(Ala2-Gly3) and poly(Ala3-Gly3) yielded a similar type of CD spectrum, analysis of which indicates that a large fraction of their residues is contained in β-turn regions. (iii) The CD spectrum of the unordered chain of these alternating copolypeptides in salt-free solution is observed in the vacuum ultraviolet region.

Keywords: polypeptide conformation, β-pleated sheets, reverse turns, protein structure

Full text

PDF
3211

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker C. C., Isenberg I. On the analysis of circular dichroic spectra of proteins. Biochemistry. 1976 Feb 10;15(3):629–634. doi: 10.1021/bi00648a028. [DOI] [PubMed] [Google Scholar]
  2. Balcerski J. S., Pysh E. S., Bonora G. M., Toniolo C. Vacuum ultraviolet circular dichroism of beta-forming alkyl oligopeptides. J Am Chem Soc. 1976 Jun 9;98(12):3470–3473. doi: 10.1021/ja00428a013. [DOI] [PubMed] [Google Scholar]
  3. Brack A., Orgel L. E. Beta structures of alternating polypeptides and their possible prebiotic significance. Nature. 1975 Jul 31;256(5516):383–387. doi: 10.1038/256383a0. [DOI] [PubMed] [Google Scholar]
  4. Brack A., Spach G. Synthesis and conformations of periodic copolypeptides of L-alanine and Glycine. Biopolymers. 1972 Mar;11(3):563–586. doi: 10.1002/bip.1972.360110304. [DOI] [PubMed] [Google Scholar]
  5. Chen Y. H., Yang J. T., Chau K. H. Determination of the helix and beta form of proteins in aqueous solution by circular dichroism. Biochemistry. 1974 Jul 30;13(16):3350–3359. doi: 10.1021/bi00713a027. [DOI] [PubMed] [Google Scholar]
  6. Chothia C. Conformation of twisted beta-pleated sheets in proteins. J Mol Biol. 1973 Apr 5;75(2):295–302. doi: 10.1016/0022-2836(73)90022-3. [DOI] [PubMed] [Google Scholar]
  7. Chou P. Y., Fasman G. D. Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins. Biochemistry. 1974 Jan 15;13(2):211–222. doi: 10.1021/bi00699a001. [DOI] [PubMed] [Google Scholar]
  8. Crawford J. L., Lipscomb W. N., Schellman C. G. The reverse turn as a polypeptide conformation in globular proteins. Proc Natl Acad Sci U S A. 1973 Feb;70(2):538–542. doi: 10.1073/pnas.70.2.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fasman G. D., Potter J. The optical rotatory dispersion of two beta structures. Biochem Biophys Res Commun. 1967 Apr 20;27(2):209–216. doi: 10.1016/s0006-291x(67)80063-9. [DOI] [PubMed] [Google Scholar]
  10. Greenfield N., Fasman G. D. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry. 1969 Oct;8(10):4108–4116. doi: 10.1021/bi00838a031. [DOI] [PubMed] [Google Scholar]
  11. HOLZWARTH G., DOTY P. THE ULTRAVIOLET CIRCULAR DICHROISM OF POLYPEPTIDES. J Am Chem Soc. 1965 Jan 20;87:218–228. doi: 10.1021/ja01080a015. [DOI] [PubMed] [Google Scholar]
  12. Iizuka E., Yang J. T. Optical rotatory dispersion and circular dichroism of the beta-form of silk fibroin in solution. Proc Natl Acad Sci U S A. 1966 May;55(5):1175–1182. doi: 10.1073/pnas.55.5.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jenness D. D., Sprecher C., Johnson W. C., Jr Circular dichroism of collagen, gelatin, and poly(proline) II in the vacuum ultraviolet. Biopolymers. 1976 Mar;15(3):513–521. doi: 10.1002/bip.1976.360150308. [DOI] [PubMed] [Google Scholar]
  14. Johnson W. C., Jr, Tinoco I., Jr Circular dichroism of polypeptide solutions in the vacuum ultraviolet. J Am Chem Soc. 1972 Jun 14;94(12):4389–4392. doi: 10.1021/ja00767a084. [DOI] [PubMed] [Google Scholar]
  15. Kubota S., Fasman G. D. The beta conformation of polypeptides of valine, isoleucine, and threonine in solution and solid-state: optical and infrared studies. Biopolymers. 1975 Mar;14(3):605–631. doi: 10.1002/bip.1975.360140314. [DOI] [PubMed] [Google Scholar]
  16. Lewis P. N., Momany F. A., Scheraga H. A. Folding of polypeptide chains in proteins: a proposed mechanism for folding. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2293–2297. doi: 10.1073/pnas.68.9.2293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lotz B., Brack A., Spach G. Beta structure of periodic copolypeptides of L-alanine and glycine. Their relevance to the structure of silks. J Mol Biol. 1974 Aug 5;87(2):193–203. doi: 10.1016/0022-2836(74)90143-0. [DOI] [PubMed] [Google Scholar]
  18. Madison V., Schellman J. Optical activity of polypeptides and proteins. Biopolymers. 1972;11(5):1041–1076. doi: 10.1002/bip.1972.360110509. [DOI] [PubMed] [Google Scholar]
  19. Quadrifoglio F., Urry D. W. Ultraviolet rotatory properties of polypeptides in solution. II. Poly-L-serine. J Am Chem Soc. 1968 May 22;90(11):2760–2765. doi: 10.1021/ja01013a005. [DOI] [PubMed] [Google Scholar]
  20. Sarkar P. K., Doty P. The optical rotatory properties of the beta-configuration in polypeptides and proteins. Proc Natl Acad Sci U S A. 1966 Apr;55(4):981–989. doi: 10.1073/pnas.55.4.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tiffany M. L., Krimm S. Effect of temperature on the circular dichroism spectra of polypeptides in the extended state. Biopolymers. 1972;11(11):2309–2316. doi: 10.1002/bip.1972.360111109. [DOI] [PubMed] [Google Scholar]
  22. Townend R., Kumosinski T. F., Timasheff S. N., Fasman G. D., Davidson B. The circular dichroism of the beta structure of poly-L-lysine. Biochem Biophys Res Commun. 1966 Apr 19;23(2):163–169. doi: 10.1016/0006-291x(66)90522-5. [DOI] [PubMed] [Google Scholar]
  23. Urry D. W., Long M. M., Ohnishi T., Jacobs M. Circular dichroism and absorption of the polytetrapeptide of elastin: a polymer model for the beta-turn. Biochem Biophys Res Commun. 1974 Dec 23;61(4):1427–1433. doi: 10.1016/s0006-291x(74)80442-0. [DOI] [PubMed] [Google Scholar]
  24. Venkatachalam C. M. Stereochemical criteria for polypeptides and proteins. V. Conformation of a system of three linked peptide units. Biopolymers. 1968 Oct;6(10):1425–1436. doi: 10.1002/bip.1968.360061006. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES