Abstract
Tourist was originally described as a 128-bp insertion mutation in the maize wx-B2 allele. Subsequent analysis revealed that Tourist elements are in the introns or flanking sequences of 11 maize genes and a single barley gene. In this study we report that Tourist elements are frequently associated with the wild-type genes of two other grasses, rice and sorghum. Six of 35 rice and 5 of 8 sorghum complete gene sequences reported to date contain Tourist elements. Furthermore, 11 additional maize genes have been found to contain Tourist elements, bringing the current total of elements associated with maize genes to 23. Sequence comparison of Tourist elements has led to the identification of four subfamilies, designated A-D. Evidence is presented for the recent mobility of elements in three of these subfamilies and in three of the four grass species. These data suggest that Tourist elements are highly repetitive in the genomes of some and perhaps all members of the grasses.
Full text
PDF![1411](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b46/43168/a1f2ec80ec14/pnas01126-0225.png)
![1412](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b46/43168/6db0849dfb67/pnas01126-0226.png)
![1413](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b46/43168/85da49f479ed/pnas01126-0227.png)
![1414](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b46/43168/e7c19126bba5/pnas01126-0228.png)
![1415](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b46/43168/37c53d839b7d/pnas01126-0229.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abler M. L., Scandalios J. G. Isolation and characterization of a genomic sequence encoding the maize Cat3 catalase gene. Plant Mol Biol. 1993 Sep;22(6):1031–1038. doi: 10.1007/BF00028975. [DOI] [PubMed] [Google Scholar]
- Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
- Athma P., Grotewold E., Peterson T. Insertional mutagenesis of the maize P gene by intragenic transposition of Ac. Genetics. 1992 May;131(1):199–209. doi: 10.1093/genetics/131.1.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Britten R. J., Kohne D. E. Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science. 1968 Aug 9;161(3841):529–540. doi: 10.1126/science.161.3841.529. [DOI] [PubMed] [Google Scholar]
- Bureau T. E., Wessler S. R. Tourist: a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell. 1992 Oct;4(10):1283–1294. doi: 10.1105/tpc.4.10.1283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christensen A. H., Sharrock R. A., Quail P. H. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol. 1992 Feb;18(4):675–689. doi: 10.1007/BF00020010. [DOI] [PubMed] [Google Scholar]
- Deininger P. L., Batzer M. A., Hutchison C. A., 3rd, Edgell M. H. Master genes in mammalian repetitive DNA amplification. Trends Genet. 1992 Sep;8(9):307–311. doi: 10.1016/0168-9525(92)90262-3. [DOI] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edwards A., Voss H., Rice P., Civitello A., Stegemann J., Schwager C., Zimmermann J., Erfle H., Caskey C. T., Ansorge W. Automated DNA sequencing of the human HPRT locus. Genomics. 1990 Apr;6(4):593–608. doi: 10.1016/0888-7543(90)90493-e. [DOI] [PubMed] [Google Scholar]
- Flavell R. B., Bennett M. D., Smith J. B., Smith D. B. Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem Genet. 1974 Oct;12(4):257–269. doi: 10.1007/BF00485947. [DOI] [PubMed] [Google Scholar]
- Flavell R. B. Repetitive DNA and chromosome evolution in plants. Philos Trans R Soc Lond B Biol Sci. 1986 Jan 29;312(1154):227–242. doi: 10.1098/rstb.1986.0004. [DOI] [PubMed] [Google Scholar]
- Gaut B. S., Clegg M. T. Molecular evolution of alcohol dehydrogenase 1 in members of the grass family. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2060–2064. doi: 10.1073/pnas.88.6.2060. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gierl A., Saedler H. Plant-transposable elements and gene tagging. Plant Mol Biol. 1992 May;19(1):39–49. doi: 10.1007/BF00015605. [DOI] [PubMed] [Google Scholar]
- Grandbastien M. A. Retroelements in higher plants. Trends Genet. 1992 Mar;8(3):103–108. doi: 10.1016/0168-9525(92)90198-d. [DOI] [PubMed] [Google Scholar]
- Huang N., Reinl S. J., Rodriguez R. L. RAmy2A; a novel alpha-amylase-encoding gene in rice. Gene. 1992 Feb 15;111(2):223–228. doi: 10.1016/0378-1119(92)90690-q. [DOI] [PubMed] [Google Scholar]
- Kawasaki T., Mizuno K., Baba T., Shimada H. Molecular analysis of the gene encoding a rice starch branching enzyme. Mol Gen Genet. 1993 Feb;237(1-2):10–16. doi: 10.1007/BF00282778. [DOI] [PubMed] [Google Scholar]
- Kay S. A., Keith B., Shinozaki K., Chua N. H. The sequence of the rice phytochrome gene. Nucleic Acids Res. 1989 Apr 11;17(7):2865–2866. doi: 10.1093/nar/17.7.2865. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kondo H., Abe K., Emori Y., Arai S. Gene organization of oryzacystatin-II, a new cystatin superfamily member of plant origin, is closely related to that of oryzacystatin-I but different from those of animal cystatins. FEBS Lett. 1991 Jan 14;278(1):87–90. doi: 10.1016/0014-5793(91)80090-p. [DOI] [PubMed] [Google Scholar]
- Leeton P. R., Smyth D. R. An abundant LINE-like element amplified in the genome of Lilium speciosum. Mol Gen Genet. 1993 Feb;237(1-2):97–104. doi: 10.1007/BF00282789. [DOI] [PubMed] [Google Scholar]
- Lepiniec L., Keryer E., Philippe H., Gadal P., Crétin C. Sorghum phosphoenolpyruvate carboxylase gene family: structure, function and molecular evolution. Plant Mol Biol. 1993 Feb;21(3):487–502. doi: 10.1007/BF00028806. [DOI] [PubMed] [Google Scholar]
- Lepiniec L., Keryer E., Tagu D., Gadal P., Crétin C. Complete nucleotide sequence of a sorghum gene coding for the phosphoenolpyruvate carboxylase involved in C4 photosynthesis. Plant Mol Biol. 1992 May;19(2):339–342. doi: 10.1007/BF00027358. [DOI] [PubMed] [Google Scholar]
- Luchetta P., Crétin C., Gadal P. Organization and expression of the two homologous genes encoding the NADP-malate dehydrogenase in Sorghum vulgare leaves. Mol Gen Genet. 1991 Sep;228(3):473–481. doi: 10.1007/BF00260642. [DOI] [PubMed] [Google Scholar]
- Ma D. P., Yang Y. W. Nucleotide sequence of a tRNA(Gly) gene from Sorghum bicolor. Nucleic Acids Res. 1988 Apr 25;16(8):3588–3588. doi: 10.1093/nar/16.8.3588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minami E., Tanaka Y. Nucleotide sequence of the gene for phenylalanine ammonia-lyase of rice and its deduced amino acid sequence. Biochim Biophys Acta. 1993 Jan 23;1171(3):321–322. doi: 10.1016/0167-4781(93)90075-o. [DOI] [PubMed] [Google Scholar]
- Osterman J. C., Dennis E. S. Molecular analysis of the ADH1-Cm allele of maize. Plant Mol Biol. 1989 Aug;13(2):203–212. doi: 10.1007/BF00016138. [DOI] [PubMed] [Google Scholar]
- Qu R. D., Huang A. H. Oleosin KD 18 on the surface of oil bodies in maize. Genomic and cDNA sequences and the deduced protein structure. J Biol Chem. 1990 Feb 5;265(4):2238–2243. [PubMed] [Google Scholar]
- Radicella J. P., Brown D., Tolar L. A., Chandler V. L. Allelic diversity of the maize B regulatory gene: different leader and promoter sequences of two B alleles determine distinct tissue specificities of anthocyanin production. Genes Dev. 1992 Nov;6(11):2152–2164. doi: 10.1101/gad.6.11.2152. [DOI] [PubMed] [Google Scholar]
- Raz R., Crétin C., Puigdomènech P., Martínez-Izquierdo J. A. The sequence of a hydroxyproline-rich glycoprotein gene from Sorghum vulgare. Plant Mol Biol. 1991 Feb;16(2):365–367. doi: 10.1007/BF00020571. [DOI] [PubMed] [Google Scholar]
- Robins D. M., Samuelson L. C. Retrotransposons and the evolution of mammalian gene expression. Genetica. 1992;86(1-3):191–201. doi: 10.1007/BF00133720. [DOI] [PubMed] [Google Scholar]
- Rohde W., Dörr S., Salamini F., Becker D. Structure of a chalcone synthase gene from Hordeum vulgare. Plant Mol Biol. 1991 Jun;16(6):1103–1106. doi: 10.1007/BF00016087. [DOI] [PubMed] [Google Scholar]
- Vieira J., Messing J. Production of single-stranded plasmid DNA. Methods Enzymol. 1987;153:3–11. doi: 10.1016/0076-6879(87)53044-0. [DOI] [PubMed] [Google Scholar]
- Yamaguchi-Shinozaki K., Mundy J., Chua N. H. Four tightly linked rab genes are differentially expressed in rice. Plant Mol Biol. 1990 Jan;14(1):29–39. doi: 10.1007/BF00015652. [DOI] [PubMed] [Google Scholar]
- Zhang R., Walker J. C. Structure and expression of the S locus-related genes of maize. Plant Mol Biol. 1993 Mar;21(6):1171–1174. doi: 10.1007/BF00023612. [DOI] [PubMed] [Google Scholar]
- de Framond A. J. A metallothionein-like gene from maize (Zea mays). Cloning and characterization. FEBS Lett. 1991 Sep 23;290(1-2):103–106. doi: 10.1016/0014-5793(91)81236-2. [DOI] [PubMed] [Google Scholar]