Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Feb;72(2):638–641. doi: 10.1073/pnas.72.2.638

Inequalities in Fourier Analysis on Rn

William Beckner 1
PMCID: PMC432369  PMID: 16592223

Abstract

This note describes two results: (i) a sharp Hausdorff-Young inequality for the Fourier transform on Lp(Rn) which extends an earlier result of Babenko; and (ii) a sharp form of Young's inequality for the convolution of functions on Rn. That is, best possible constants are obtained for the following Lp(Rn) inequalities: [Formula: see text]

Keywords: Fourier transform, convolution, Hermite semigroup

Full text

PDF
638

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES